BIMIOBA INVESTMENTS TRUST C/- WILLANA ASSOCIATES

DETAILED SITE INVESTIGATION PROPOSED RESIDENTIAL DEVELOPMENT 37 - 39 PAVESI STREET, GUILDFORD WEST NSW

Report E22817 AA_Rev0 20 January 2016

REPORT DISTRIBUTION

Detailed Site Investigation Proposed Residential Development 37 - 39 Pavesi Street, Guildford West NSW

EI Report No.:E22817 AA_Rev0Date:20 January 2016

Copie	2S	Recipient
1 1	Soft Copy (PDF – Secured, issued by email) Hard Copy (sent by Express Courier)	Bimioba Investments Trust c/- Willana Associates PO Box 170, RANDWICK NSW 2031
	Original (Saved to Digital Archives)	Environmental Investigations Suite 6.01, 55 Miller Street, PYRMONT NSW 2009

Author

JESSIE SIXSMITH Environmental Scientist

fort

Technical Reviewer

NATHAN FOSTER Senior Environmental Scientist

Revision	Details	Date	Amended By
0	Original	20 January 2016	-

© 2016 Environmental Investigations Australia Pty Ltd T/A Environmental Investigations (EI)

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by EI.

EXECUTIVE SUMMARY

Background

Bimioba Investments Trust c/- Willana Associates engaged Environmental Investigations Australia Pty Ltd (EI) to conduct a Detailed Site Investigation (Stage 2 DSI) for the former commercial / industrial property located at 37 - 39 Pavesi Street, Guildford West NSW ('the site'). This environmental assessment was completed as part of a development application process through Holroyd Council to allow site development for low density residential land use.

Based on a previous Stage 1 Preliminary Site Investigation undertaken by Consulting Earth Scientists in August, 2014, the site was historically industrial and commercial in nature.

Objectives

The main objectives of the assessment were to:

- Characterise site environmental conditions in relation to the nature, degree and sources of any soil, vapour and groundwater impacts;
- Target potentially impacted areas identified during the preliminary stages of the assessment for intrusive investigation;
- Understand the influence of site specific, geologic and hydrogeological conditions on the potential fate and transport of any impacts that may be identified;
- Evaluate potential risks that identified impacts may pose to human health and the environment; and
- Where site contamination is confirmed, provide data to assist in the selection and design of appropriate remedial options.

Findings

The work was conducted with reference to the regulatory framework outlined in Section 1.3 of this report and assessment findings indicated the following:

- The site and surrounding areas have a mixed history of industrial and commercial land use;
- A previous environmental assessment was undertaken for Lot 36 DP10958 in 2007 by WSP Environmental Pty Ltd. This investigation identified that the site was previously used as a chemical blending facility. Two USTs were used to store kerosene (30,000 L) and diesel (12,000 L). In addition, three redundant USTs were also identified, located close to the eastern boundary, of which were installed by a trucking company who operated the site during the 1960s and 1970s. Anecdotal evidence from site representatives reported that the USTs were decommissioned and filled with water in the 1980s;
- Potentially contaminating land use activities that were identified included:
 - Application of uncontrolled fill on the site;

- Storage of chemicals on site associated with former manufacturing processes that took place (i.e. chemical blenders);
- Leakages and surface spills associated within manufacturing processes on site;
- Storage of fuels within the USTs and associated pipe work / fuel lines throughout the warehouse/site; and
- Demolition of former site structures possibly constructed from hazardous building materials.
- Soil sampling and analysis was conducted at nineteen (19) targeted test bore locations identified surface layers comprised of fill materials of various constituents, underlain by residual clays, with the Bringelly Shale at depth;
- Boreholes BH104M, BH106M and BH117M were converted to groundwater monitoring bores, and groundwater was encountered at depths ranging from 5.0 5.2 mBGL within the weathered Bringelly Shale;
- Results of soil samples analysed identified bonded and fibrous asbestos in surface fill samples at boreholes BH117 and BH118 located within the south western portion of the site, and indicated that asbestos contamination is likely to be confined to upper fill layers. This is consistent with observations made within the vicinity of these boreholes, which included crushed asbestos fibro pieces distributed throughout the gravelled car-park area located in the south western corner of the site;
- Exceedances of heavy metals above the adopted EIL criteria were detected in soil samples at four borehole locations across the site;
- F2 (>C₁₀-C₁₆)) TRH fraction above the HSL A&B and ESL criteria was identified in soil sample BH114_1.0-1.1 (510 mg/kg). BH114 was not located within close vicinity of the known UPSS tank farm, therefore indicating the potential for an additional UPSS or unknown source of TRH to be present on site;
- Hydrocarbon odours were observed in soil sample at test boreholes BH106 (0.5 2.0 mBGL), BH109 (from 0.2 0.9 mBGL), BH111 (from 0.5 1.8 mBGL) and BH115 (from 0.2 0.6 mBGL). Although no elevated TRH concentrations were detected in soil samples analysed from these boreholes, the source of the odour is unknown; and
- Elevated concentrations of heavy metals were detected in groundwater monitoring wells BH104M, BH106M and BH117M. Based on the inferred groundwater flow direction to the east, the presence of elevated background heavy metal concentrations within groundwater indicates that high metal concentrations may be attributable to an offsite source.

The following data gaps however remain and require closure by further investigations:

- The spatial extent of asbestos, TRH and heavy metal contamination exceeding adopted human-health and ecological criteria at boreholes identified;
- Further investigation is required to identify the source of hydrocarbon contamination at BH114 and staining and odours identified at BH109, BH111, and BH115;
- Further investigation is required to establish the number of UPSS on site and to identify any additional UPSS and pipework;

- Groundwater quality in proximity to BH114 with regard to potential hydrocarbon contamination of groundwater;
- Confirmation of groundwater flow direction by the surveying of each individual well at the site;
- Confirmation of reported heavy metal concentrations in groundwater and verification of an offsite source of groundwater contamination;
- The quality of soils located in the footprint of the former residential dwelling located within the southern portion of the site; and
- Potential presence of hazardous materials present within the existing structure.

Conclusions and Recommendations

Based on the findings of this report, EI conclude that contamination was identified at the site during this DSI, however, can be made suitable to allow the site to be used for low density residential purposes, subject to the implementation of the following recommendations:

- Prior to site demolition, carry out a Hazardous Materials Survey on existing site structures to identify potentially hazardous building products that may be released to the environment during demolition;
- Preparation and implementation of a Remedial Action Plan (RAP), which should:
 - Outline the remediation requirements for soil and groundwater contamination identified and to close the existing data gaps identified during this DSI;
 - Provide methodology for the appropriate decommissioning, removal and validation of the UPSS on site;
 - Provide the requirements and procedure for waste classification assessment, in order to enable classification of site soils to be excavated and disposed off-site; and
 - Provide a SAQP for the validation of remediation activities performed on-site.
- Undertake supplementary investigations, and remediation and validation works for the site, as outlined in the RAP; and
- Preparation of a validation report by a suitably qualified environmental consultant, certifying site suitability of soils and groundwater for the proposed land use.

CONTENTS

EXEC	CUTIVE SUMMARY	1
1.	INTRODUCTION	7
	1.1 BACKGROUND AND PURPOSE	7
	1.2 PROPOSED DEVELOPMENT	7
	1.3 REGULATORY FRAMEWORK	7
	1.4 PROJECT OBJECTIVES	8
	1.5 SCOPE OF WORKS	8
2.	SITE DESCRIPTION	10
	2.1 PROPERTY IDENTIFICATION, LOCATION AND PHYSICAL SETTING	10
	2.2 SURROUNDING LAND USE	11
	2.3 REGIONAL SETTING2.4 GROUNDWATER BORE RECORDS AND LOCAL GROUNDWATER USE	11 12
	2.5 SITE WALKOVER INSPECTION	12
3.	PREVIOUS INVESTIGATIONS	13
J.	3.1 Available documents	13
	3.2 SUMMARY OF CONTAMINATION	13
4.	CONCEPTUAL SITE MODEL	15
4.	4.1 Chemical Hazards and Contamination Sources	15
	4.2 CHEMICALS OF CONCERN	15
	4.3 POTENTIAL SOURCES, EXPOSURE PATHWAYS AND RECEPTORS	15
	4.4 DATA GAPS	2
5.	SAMPLING, ANALYTICAL AND QUALITY PLAN (SAQP)	3
	5.1 DATA QUALITY OBJECTIVES (DQO)	3
	5.2 DATA QUALITY INDICATORS	7
6.	ASSESSMENT METHODOLOGY	8
	6.1 SAMPLING RATIONALE	8
	6.2 Investigation Constraints	8
	6.3 ASSESSMENT CRITERIA	8
	6.4 Soil Investigations	10
	6.5 GROUNDWATER INVESTIGATIONS	11
7.	DATA QUALITY ASSESSMENT	14
8.	RESULTS	15
	8.1 Soil Investigation Results	15
	8.2 GROUNDWATER INVESTIGATION RESULTS	16
	8.3 LABORATORY ANALYTICAL RESULTS	18
	8.4 GROUNDWATER ANALYTICAL RESULTS	19
9.	SITE CHARACTERISATION DISCUSSION	21
	9.1 ASBESTOS RISK 9.2 TRH & BTEX IN SOIL	21 21
	9.2 TREADIEX IN SOIL 9.3 HEAVY METALS IN SOIL	21
	9.4 OCPS & OPPS IN SOIL	22
	9.5 HEAVY METALS, VOCS AND TRH IN GROUNDWATER	22
	9.6 REVISED CONCEPTUAL SITE MODEL - POST FIELD INVESTIGATION	23
10.	CONCLUSIONS	26
11.	RECOMMENDATIONS	29
12.	STATEMENT OF LIMITATIONS	30

REFERENCES

ABBREVIATIONS

TABLES (In Text) TABLE 2-1 SITE IDENTIFICATION, LOCATION AND ZONING 10 TABLE 2-2 SURROUNDING LAND USES 11 TABLE 2-3 **REGIONAL SETTING INFORMATION** 11 TABLE 3-1 SUMMARY OF PREVIOUS INVESTIGATION WORKS AND FINDINGS 13 TABLE 5-1 SUMMARY OF PROJECT DATA QUALITY OBJECTIVES 4 TABLE 5-2 DATA QUALITY INDICATORS 7 TABLE 6-1 ADOPTED INVESTIGATION LEVELS FOR SOIL AND GROUNDWATER 9 TABLE 6-3 SUMMARY OF SOIL INVESTIGATION METHODOLOGY 10 TABLE 6-4 SUMMARY OF GROUNDWATER INVESTIGATION METHODOLOGY 12 TABLE 8-1 GENERALISED SUBSURFACE PROFILE 15 **TABLE 8-2** MONITORING WELL CONSTRUCTION DETAILS 16 TABLE 8-4 SUMMARY OF SOIL ANALYTICAL RESULTS 18 TABLE 8-5 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS 20 TABLES TABLE T1 SOIL INVESTIGATION RESULTS TABLE T2 **GROUNDWATER INVESTIGATION RESULTS FIGURES** FIGURE 1 LOCALITY PLAN SITE LAYOUT AND SAMPLING LOCATIONS FIGURE 2 FIGURE 3 SOIL AND GROUNDWATER EXCEEDANCES **APPENDICES**

APPENDIX A PROPOSED DEVELOPMENT PLANS

APPENDIX B SITE PHOTOGRAPHS

APPENDIX C BOREHOLE LOGS

APPENDIX D FIELD DATA SHEETS

APPENDIX E CHAIN OF CUSTODY AND SAMPLE RECEIPT FORMS

APPENDIX F LABORATORY ANALYTICAL REPORTS

APPENDIX G QA/QC ASSESSMENT

APPENDIX H LABORATORY QA/AC POLICIES AND DQOS

1. INTRODUCTION

1.1 BACKGROUND AND PURPOSE

Bimioba Investments Trust c/- Willana Associates (the Client) engaged Environmental Investigations Australia Pty Ltd (EI) to conduct a Detailed Site Investigation (DSI) for site characterisation purposes for the Proposed Residential Development, located at 37 - 39 Pavesi Street, Guildford West NSW ('the site').

As shown in Figure 1, the site is currently used as a commercial warehouse for the storage and distribution of rugs and is located approximately 23 km west of the Sydney central business district, comprising Lot 36 DP10958. The site is situated within the Local Government Area of Holroyd Council and covers a total area of approximately 8,050 m², as depicted in the site plan presented as Figure 2.

This assessment was conducted in support of a Development Application (DA) to Holroyd Council and for the purpose of enabling the developer to meet its obligations under the Contaminated Land Management Act 1997 (CLM Act), for the assessment and management of contaminated soil and/or groundwater.

1.2 PROPOSED DEVELOPMENT

The proposed development will include the demolition of existing site structures and the construction of low density residential houses. The proposed subdivision and development plans are provided as Appendix A.

1.3 REGULATORY FRAMEWORK

The following regulatory framework and guidelines were considered during the preparation of this report:

- ANZECC & ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality;
- DECCW (2009) Guidelines for Implementing the Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2008, (UPSS Guidelines);
- DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination;
- DEC (2006) Guidelines for the NSW Site Auditor Scheme (2nd Edition);
- EPA (1995) Sampling Design Guidelines;
- EPA (2014) Technical Note: Investigation of Service Station Sites;
- NEPC (2013) Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater;
- NEPC (2013) Schedule B(2) Guideline on Site Characterisation;
- OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites.
- Contaminated Land Management Act (1997);
- State Environment Protection Policy 55 (SEPP 55) Remediation of Land, and

• Holroyd Council Contaminated Land Policy 2001.

1.4 PROJECT OBJECTIVES

In accordance with the development application process, the proponent is required to undertake a detailed contamination assessment for any future development applications. The primary objectives of this investigation were therefore to:

- Characterise site environmental conditions in relation to the nature, degree and sources of any soil, vapour and groundwater impacts;
- Target potentially impacted areas identified during the preliminary stages of the assessment for intrusive investigation;
- Understand the influence of site specific, geologic and hydrogeological conditions on the potential fate and transport of any impacts that may be identified;
- Evaluate potential risks that identified impacts may pose to human health and the environment; and
- Where site contamination is confirmed, provide data to assist in the selection and design of appropriate remedial options.

1.5 SCOPE OF WORKS

In order to achieve the above objectives, and in accordance with EI proposal P13538.1 (dated 26 November 2015), the scope of works was as follows:

1.5.1 Desktop Study

- Review of previous Environmental reports undertaken for the site; and
- A review of existing underground services on site.

1.5.2 Field Work & Laboratory Analysis

- A detailed site walkover inspection;
- Drilling of boreholes at nineteen locations across accessible areas of the site, in accordance with the minimum sampling protocol recommended by EPA (1995);
- Installation of three groundwater monitoring wells to a maximum depth of 6.0 m (or prior refusal), constructed to standard environmental protocols to investigate potential groundwater contamination;
- Multiple level soil sampling within fill and natural soils and one round of groundwater sampling from the constructed groundwater monitoring well; and
- Laboratory analysis of selected soil and groundwater samples for relevant analytical parameters as determined from the site history survey and field observations during the investigation programme.

1.5.3 Data Analysis and Reporting

A DSI report would also be prepared to document desk study findings, the conceptual site model, data quality objectives, investigation methodologies and results. The report would also provide a record of observations made during the detailed site walkover inspection, borehole and monitoring well construction logs and a discussion of laboratory analytical results in regards to potential risks to human health, the environment and the aesthetic uses of the land.

2. SITE DESCRIPTION

2.1 PROPERTY IDENTIFICATION, LOCATION AND PHYSICAL SETTING

The site identification details and associated information are presented in Table 2-1, while the site locality is shown in Figure 1.

Attribute	Description
Street Address	37 - 39 Pavesi Street, Guildford West NSW
Location Description	Approx. 23 km west of Sydney CBD, a rectangular shaped block bound by Pavesi Street (south), commercial / industrial properties (west), low residential dwellings (east) and bus way followed by low density residential dwellings (north).
	Northeast corner of site: GDA94-MGA55 Easting: 866477.461, Northing: 6248035.971 (Source: http://maps.six.nsw.gov.au)
Site Area	Approx. 8,050 m ² (Source: http://maps.six.nsw.gov.au)
Site Owner	Bimioba Investments Trust c/- Willana Associates
Lot and Deposited Plan (DP)	Lot 36 DP10958
State Survey Marks	One State Survey Mark (SSM) are situated in close proximity to the site: SS165441 on the corner of Pavesi Street and Iris Street, south of the site (Source: http://maps.six.nsw.gov.au)
Local Government Authority	Holroyd Council
Parish	St John
County	Cumberland
Current Zoning	IN2 – light industrial (Holroyd Local Environment Plan, 2013)
Current Land Uses	Northern area – Large warehouse occupying the western, central portion with paved and gravelled areas across the northern and eastern areas.
	Southern Area – Former residential dwelling currently used as an office for the rug distribution centre, with an open, gravelled car park within the south western area.

At the time of this assessment the site was occupied by a large warehouse, former residential house which is currently being used as an office and open paved and gravelled areas. The current site layout is provided as Figure 2.

2.2 SURROUNDING LAND USE

The site is situated within an area of mixed land uses and current uses. Current uses of surrounding land are described in Table 2-2.

Direction Relative to Site	Land Use Description
North	A bus way, followed by low density residential dwellings.
East	Low density residential dwellings.
South	Pavesi Street, followed by commercial and low density residential dwellings.
West	Commercial / light industrial properties.

Table 2-2 Surrounding Land Uses

The nearest sensitive receptors include residential houses located immediately east and north of the site, Guildford West Public School and Guildford West Children's Centre located approximately 640 m south east, Kids World kindergarten located approximately 706 m south east and Merrylands High School located 870 m north east.

2.3 REGIONAL SETTING

Regional topography, geology, soil landscape and hydrogeological information are summarised in Table 2-3.

Attribute	Description
Topography	The site is generally flat, with a slight decline towards the south.
Site Drainage	Consistent with the general slope of the site, stormwater is assumed to flow south towards Prospect Creek via drainage systems discharging to various stormwater easements and the municipal stormwater system.
Regional Geology	With reference to the 1:100 000 scale Geological Series Sheet 9130 (Penrith) the site is likely to be underlain by Bringelly Shale (Rwb), a member of the Wianamatta Group, comprising of shale, carbonaceous claystone, claystone, laminite, fine to medium grained lithic sandstone, with rare coal and tuff.
Soil Landscapes	The Soil Conservation Service of NSW Soil Landscapes of the Sydney 1:100,000 Sheet (Chapman and Murphy, 1989) indicates that the site overlies the Blacktown (bt) landscape. Typically consisting of gently undulating rises on Waianamatta Group Shales and Hawkesbury Shale with broad rounded crests and ridges with gently inclined slopes (<5%). Soils consist of shallow to moderately deep <1.5m red and brown podzolic soils on crests and upper slopes and in well drained.
Acid Sulphate Soil Risk	As the site is not considered to be an estuarine area, Holroyd Council and the NSW Department of Land and Water Conservation do not provide acid sulphate soil risk maps for the area. Instead, it is considered that the site within an area classified as "No Known Occurrence". In such cases, acid sulphate soils (ASS) are not known or expected to occur and land management activities are not likely to be affected by ASS materials.

Table 2-3Regional Setting Information

Attribute	Description
Depth to Groundwater	Onsite groundwater conditions, including groundwater flow direction, are discussed in Section 8.2.
Nearest Surface Water Feature	Prospect Creek is located approximately 1.0 km south of the site and forms the nearest receiving surface water body in relation to the site and is classed as a fresh water ecosystem, for impact assessment purposes.
Groundwater Flow Direction	Groundwater flow direction in the vicinity of the site is inferred to be towards Prospect Creek located approximately 1.0 km south to south-west of the site.

2.4 GROUNDWATER BORE RECORDS AND LOCAL GROUNDWATER USE

An online search of registered groundwater bores was conducted by EI on the 9 December 2015 through the NSW Office of Water (Ref. http:// realtimedata.water.nsw.gov.au/water.stm). There were no registered bores within a 500 m radius of the site.

2.5 SITE WALKOVER INSPECTION

El staff made a number of observations during a detailed site inspection on 8 December 2015 which included the following:

- The sites was occupied by a former residential house within the southern portion of the site, a large warehouse within the central portion and open, paved and grassed areas within the eastern and northern portions of the site (Photo 1 and Photo 2);
- The residential building consisted of brick and steel, while the warehouse consisted of a large brick and steel structure with corrugated asbestos sheeting ("super-six" sheeting) along the eastern external wall;
- The northern portion of the site was gravelled / asphalt with over-grown grass and vegetation. "Super-six" cement-fibre sheeting (potentially contaminating asbestos) was identified (Photo 3), along with smaller pieces of fragmented cement-fibre sheeting within a small stockpile (Photo 4). Two caravans, in average to poor condition were also present within this area of the site;
- A large, stockpile was present within north-eastern area of the site, this stockpile was overgrown with grass and trees, and contained various materials including bricks and fill (Photo 5);
- Two Underground Storage Tanks (USTs) were identified in the central western area of the site (Photo 6); and
- Fragments of cement-fibre sheeting were observed on the gravelled carpark located in the south-western corner of the site (Photo 7).

A detailed photo log is provided in Appendix B.

3. PREVIOUS INVESTIGATIONS

3.1 AVAILABLE DOCUMENTS

A previous environmental investigation in the form of a Phase 1 Environmental Site Assessment was conducted on the site and the adjoining western lot by Consulting Earth Scientists (CES) in August 2015. CES documented their findings in a report titled Phase 1 Environmental Site Assessment Report at 33-35 Pavesi Street, Guildford West, NSW (Ref. CES Report ID. CES150703-BIM-AC, 3 August 2015), which provided an overall indication of contamination for the proposed development. A summary of CES' works and key findings is outlined in Table 3-1.

Table 3-1	Summary of Previous	Investigation Work	s and Findings
		invoorigation non	o ana i manigo

Assessment Details	Project Tasks and Findings	
Phase 1 Environment	al Site Assessment (CES, 2015)	
Work Objectives	To assess the potential for contamination that may have arisen from past and / or present activities undertaken on and / or adjacent to the site.	
Scope of Works	 Identification of the site, including location, address, boundaries, zoning and title descriptions; Comprehensive research to enable documentation of the site history and assessment of potential sources of contamination; Completion of an underground services search; A site inspection to visually identify potential sources of contamination; and Preparation of a Phase 1 ESA report. 	
Conclusions	 The results of the Phase 1 ESA indicated that the site and surrounding areas have a mixed history of industrial and commercial land use. A previous environmental assessment was undertaken for Lot 36 DP10958 in 2007 by WSP Environmental Pty Ltd. This investigation identified that the site was previously used as a chemical blending facility. Two USTs were used to store kerosene (30,000 L) and diesel (12,000 L). In addition, three redundant USTs were also identified, located close to the eastern boundary, of which were installed by a trucking company who operated the site during the 1960s and 1970s. Anecdotal evidence from site representatives reported that the USTs were decommissioned and filled with water in the 1980s. 	
	 Potentially contaminating land use activities that were identified included: Application of uncontrolled fill on the site; Storage of chemicals on site associated with former manufacturing processes that took place (i.e. chemical blenders); Leakages and surface spills associated within manufacturing processes on site; Storage of fuels within the USTs and potential localised contamination associated with fuel lines used to distribute fuel into process areas within the warehouse; and Demolition of former site structures possibly constructed from hazardous building materials. 	
Recommendations	Carry out an investigation of the soil and groundwater at the site; and Removal and excavation of USTs and surrounding soils as part of the proposed development. A programme of soil and groundwater validation within the vicinity of the tanks will be required as part of these works.	

3.2 SUMMARY OF CONTAMINATION

In summary, as described above, the following potential sources of contamination identified at the site were identified during the previous Stage 1 ESA:

- Application of uncontrolled fill on the site;
- Storage of chemicals on site associated with former manufacturing processes that took place (i.e. truck bodies and chemical blenders);
- Leakages and surface spills associated within manufacturing processes on site;
- Storage of fuels within the USTs and along associated fuel lines; and
- Demolition of former site structures possibly constructed from hazardous building materials.

4. CONCEPTUAL SITE MODEL

In accordance with NEPM (2013) Schedule B2 – Guideline on Site Characterisation and to aid in the assessment of data collection for the site, EI developed a preliminary conceptual site model (CSM) assessing plausible pollutant linkages between potential contamination sources, migration pathways and receptors. The CSM provides a framework for the review of the reliability and useability of the data collected and to identify data gaps in the existing site characterisation.

4.1 CHEMICAL HAZARDS AND CONTAMINATION SOURCES

On the basis of site history and search findings (described in Section 5) EI consider potential chemical hazards and onsite contamination sources to be as follows:

- Imported fill soils of unknown origin distributed across the site;
- Impacts from previous light industrial manufacturing activities at the site including the former manufacturing activities (i.e. chemical blenders);
- Painted surfaces in relation to the structures (buildings) that are currently present on the site;
- Hazardous materials, including potential asbestos-containing materials (ACM) from building products;
- Potential leakages and surface spills associated with the manufacturing processes previously undertaken on site;
- Storage of fuels within USTs on the site and localised contamination associated with fuel lines; and
- Deeper, natural soils containing residual impacts, representing potential secondary sources of contamination.

4.2 CHEMICALS OF CONCERN

Based on the findings of the site contamination appraisal the chemicals of concern (COC) at the site are considered to be:

- Soil heavy metals (HMs), total recoverable hydrocarbons (TRH), polycyclic aromatic hydrocarbons (PAH), monocyclic aromatic hydrocarbon compounds benzene, toluene, ethylbenzene and xylenes (BTEX), organochlorine and organophosphate pesticides (OCP/ OPP), polychlorinated biphenyls (PCB) and asbestos.
- Groundwater HMs, TRH, BTEX, PAH and volatile organic compounds (VOC), including chlorinated VOC (VOCC) such as trichloroethylene (TCE).

4.3 POTENTIAL SOURCES, EXPOSURE PATHWAYS AND RECEPTORS

Potential contamination sources, exposure pathways and human and environmental receptors that were considered relevant for this assessment are summarised along with a qualitative assessment of the potential risks posed by complete exposure pathways in Figure 4-1.

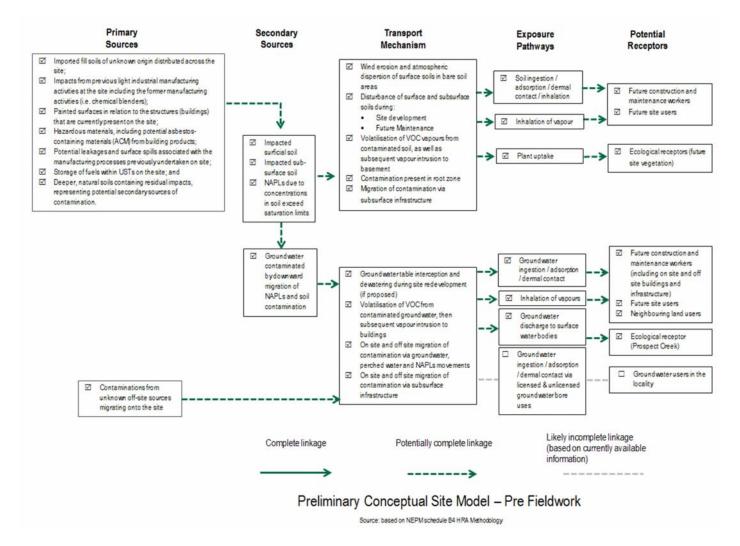


Figure 4-1 Pre-fieldwork Preliminary Conceptual Site Model

Environmental Investigations Australia Contamination | Remediation | Geotechnical

4.4 DATA GAPS

Based on information from the site walkover inspection and site history review, EI considered a programme of intrusive investigation was warranted to conduct targeted sampling at locations of known, potential sources of contamination (as listed in Section 5.1), with systematic sampling coverage in site areas where operational site history was not documented.

5. SAMPLING, ANALYTICAL AND QUALITY PLAN (SAQP)

The SAQP plays a crucial role in ensuring that the data collected as part of this, and ongoing environmental works carried out at the site are representative, and provide a robust basis for site assessment decisions. This SAQP includes the following:

- Data quality objectives, including a summary of the objectives of the ESA;
- Investigation methodology including media to be sampled, details of analytes and parameters to be monitored and a description of intended sampling points;
- Sampling methods and procedures;
- Field screening methods;
- Analysis Methods;
- Sample handling, preservation and storage; and
- Analytical QA/QC.

5.1 DATA QUALITY OBJECTIVES (DQO)

In accordance with the USEPA (2006) Data Quality Assessment and the DEC (2006) Guidelines for the NSW Site Auditor Scheme, the process of developing Data Quality Objectives (DQO) was used by the EI assessment team to determine the appropriate level of data quality needed for the specific data requirements of the project. The DQO process that was applied for this assessment is documented in Table 5-1.

Table 5-1Summary of Project Data Quality Objectives

DQO Steps (NSW DEC, 2006)	Details	Comments (changes during investigation)
1. State the Problem Summarise the contamination problem that will require new environmental data, and identify the resources available to resolve the problem; develop a conceptual site model	 The site is to be redeveloped for low-density residential housing, with accessible soil areas. Historical information and site inspection identified the potential for contamination to be present in site soil and/or groundwater, contributed by various potential sources listed in Section 4.1. Based on the site history information collected, a preliminary conceptual site model of the site has been developed, and is present in Section 4. The investigation sampling must provide supportive information on the environmental conditions of the site to determine the site's suitability for the proposed development. 	
2. Identify the Goal of the Study (Identify the decisions) Identify the decisions that need to be made on the contamination problem and the new environmental data required to make them	 Based on the objectives outlined in Section 1.4, the decisions that need to be made are: Has the nature, extent and source of any soil, vapour and/or groundwater impacts onsite been defined? What impact do the site specific, geologic and hydrogeological conditions have on the fate and transport of any impacts that may be identified? Does the level of impact coupled with the fate and transport of identified contaminants represent an unacceptable risk to identified human and/or environmental receptors on or offsite? Does the collected data provide sufficient information to allow the selection and design of an appropriate remedial strategy, if necessary? 	
3. Identify Information Inputs (Identify inputs to decision) Identify the information needed to support any decision and specify which inputs require new environmental measurements	 Inputs to the decision making process include: Site history information from the previous CES (2015) investigation; Areas of concern identified by CES (2015) and during the site inspection prior to intrusive investigations; National and NSW EPA guidelines under the NSW Contaminated Land Management Act 1997; Investigation sampling to verify the presence of onsite contamination and to evaluate the potential risks to sensitive receptors; Laboratory analysis of selected soil and groundwater samples will comprise contaminants of concern presented in Section 4.2; and At the end of the assessment, a decision must be made regarding whether the soils and groundwater are suitable for the proposed development, or if additional investigation or remedial works are required to make the site suitable. 	Due to an impenetrable object (possibly concrete), deeper fill soils and natural soils could not be assessed at test location BH119.

DQO Steps (NSW DEC, 2006)	Details	Comments (changes during investigation)
4. Define the Boundaries of the Study Specify the spatial and temporal aspects of the environmental media that the data must represent to support decision	 Lateral – The investigation will be conducted within the cadastral site boundaries; which defines the extent of the investigation Vertical – From existing ground surface, underlying fill and natural soil horizons, to underlying groundwater water-bearing zone(s); and Temporal – The results will be valid on the day samples are collected and will remain valid as long as no changes occur on site or contamination (if present) does not migrate on site or on to the site from off-site sources. 	
 5. Develop the Analytic Approach (Develop a decision rule) To define the parameter of interest, specify the action level, and integrate previous DQO outputs into a single statement that describes a logical basis for choosing from alternative actions 	 The decision rules for the investigation were: If the concentrations of contaminants in the soils data exceed the land use criteria; then assess the need to further investigate the extent of impacts onsite, and Decision criteria for QA/QC measures are defined by the Data Quality Indicators (DQI) in Table 5-2. 	

Environmental Investigations Australia Contamination | Remediation | Geotechnical

DQO Steps (NSW DEC, 2006)	Details	Comments (changes during investigation)
6. Specify Performance or Acceptance Criteria (Specify limits on decision errors) Specify the decision-maker's acceptable limits on decision errors, which are used to establish performance goals for limiting uncertainties in the data	 Specific limits for this project are to be in accordance with the National and NSW EPA guidance, and appropriate indicators of data quality and standard procedures for field sampling and handling. This should include the following points to quantify tolerable limits: The null hypothesis for the investigation is that: The 95% Upper Confidence Limits (UCL) of the mean for contaminants of concern exceed residential (with accessible soil) land use criteria across the site. Sampling on a 20.5 m grid will allow detection of a circular hotspot with a nominal diameter of 24 m with 95% certainty; The acceptance of the site will be based on the probability that The 95% UCL of the mean of the data will satisfy the given site criteria. Therefore a limit on the decision error will be 5% that a conclusive statement may be incorrect; and The standard deviation of the results is less than 50% of the relevant remediation acceptance criterion; and No single results exceeds the remediation acceptance criteria by 250% or more; and Soil concentrations for chemicals of concern that are below investigation criteria made or approved by the NSW EPA will be treated as acceptable and indicative of suitability for the proposed land use(s); and If contaminant concentrations in groundwater exceed the adopted criteria, further investigation will be considered prudent. If no contamination is detected in groundwater, further action will not be warranted. 	
7. Develop the Detailed Plan for Obtaining Data (Optimise the design for obtaining data) Identify the most resource-effective sampling and analysis design for general data that are expected to satisfy the DQOs	 The site area (8,050 m²) required nineteen sampling points according to EPA (1995); Soil sampling locations were set using a systematic sampling pattern across the accessible areas of the site; An upper soil profile sample (or soil extracted immediately beneath the concrete hardstand / pavement) will be collected at each borehole location and tested for chemicals of concern, to assess the conditions of fill layer, and impacts from activities above ground. Further sampling would also be carried out at deeper soil layers. These samples would be selected for testing based on field observations (including visual and olfactory evidence, as well as soil vapour screening in headspace samples) whilst giving consideration to characterise the subsurface stratigraphy; Three groundwater monitoring wells were proposed to characterise groundwater quality within the site; and Written instructions will be issued to guide field personnel in the required fieldwork activities. 	

5.2 DATA QUALITY INDICATORS

To ensure that the investigation data collected was of an acceptable quality, the investigation data set was assessed against the data quality indicators (DQI) outlined in Table 5-2, which related to both field and laboratory-based procedures. The assessment of data quality is discussed in Section 7.

QA/QC Measures	Data Quality Indicators
Precision – A quantitative measure of the variability (or reproducibility) of data	 Data precision would be assessed by reviewing the performance of blind field duplicate sample sets, through calculation of relative percentage differences (RPD). Data precision would be deemed acceptable if RPDs are found to be less than 30%. RPDs that exceed this range may be considered acceptable where: Results are less than 10 times the limits of reporting (LOR); Results are less than 20 times the LOR and the RPD is less than 50%; or Heterogeneous materials or volatile compounds are encountered.
Accuracy – A quantitative measure of the closeness of reported data to the "true" value	 Data accuracy would be assessed through the analysis of: Method blanks, which are analysed for the analytes targeted in the primary samples; Matrix spike and matrix spike duplicate sample sets; Laboratory control samples; and Calibration of instruments against known standards.
Representativeness – The confidence (expressed qualitatively) that data are representative of each medium present onsite	 To ensure the data produced by the laboratory is representative of conditions encountered in the field, the laboratory would carry out the following: Blank samples will be run in parallel with field samples to confirm there are no unacceptable instances of laboratory artefacts; Review of relative percentage differences (RPD) values for field and laboratory duplicates to provide an indication that the samples are generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities; and The appropriateness of collection methodologies, handling, storage and preservation techniques will be assessed to ensure/confirm there was minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods).
Completeness – A measure of the amount of useable data from a data collection activity	 Analytical data sets acquired during the assessment will be evaluated as complete, upon confirmation that: Standard operating procedures (SOPs) for sampling protocols were adhered to; and Copies of all COC documentation are presented, reviewed and found to be properly completed. It can therefore be considered whether the proportion of "useable data" generated in the data collection activities is sufficient for the purposes of the land use assessment.
Comparability – The confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event	Given that a reported data set can comprise several data sets from separate sampling episodes, issues of comparability between data sets are reduced through adherence to SOPs and regulator-endorsed or published guidelines and standards on each data gathering activity. In addition the data will be collected by experienced samplers and NATA-accredited laboratory methodologies will be employed in all laboratory testing programs.

Table 5-2Data Quality Indicators

6. ASSESSMENT METHODOLOGY

6.1 SAMPLING RATIONALE

With reference to the preliminary CSM described in Section 4, soil and groundwater investigation works were planned in accordance with the following rationale:

- Sampling fill and natural soils from nineteen test bore locations located systematically across the site using a
 systematic triangular-based sampling pattern, and at targeted locations at/or adjacent to former onsite
 contamination sources (i.e. at the areas of the UST) to assess for the presence of residual soil contamination;
- Sampling groundwater during a single groundwater monitoring event (GME) at three monitoring wells located close to the up gradient and down gradient site boundaries and immediately down gradient of the UST area, to assess for potential groundwater contamination; and
- Laboratory analysis of representative soil and groundwater samples for the identified chemicals of concern.

6.2 INVESTIGATION CONSTRAINTS

The number of test bores drilled and monitoring wells installed during the investigation phase achieved the planned investigation scope described in the DQO (Section 5.1), however, the following investigation constraint was encountered:

• Borehole BH119 did not achieve the target depth of natural soils due to buried impenetrable materials which caused auger refusal.

6.3 ASSESSMENT CRITERIA

The assessment criteria proposed for this project are outlined in Table 6-1. These were selected from available published guidelines that are endorsed by national or state regulatory authorities, with due consideration of the exposure scenario that is expected for various parts of the site, the likely exposure pathways and the identified potential receptors.

Ρ	а	g	е	9
---	---	---	---	---

Environmental Media	Adopted Guidelines	Rationale
Soil	NEPM, 2013 Soil HILs, EILs, HSLs, ESLs & Management Limits for TPHs	 Soil Health-based Investigation Levels (HILs) All soil samples to be assessed against the NEPM 2013 HIL-A thresholds for residential sites with gardens/accessible soils. Ecological Investigation Levels (EILs) Areas no basement excavation is proposed, all soil samples will be assessed against the NEPM 2013 EILs for arsenic, copper, chromium (III), nickel, lead, zinc, DDT and naphthalene which have been derived for protection of terrestrial ecosystems. Table 7-2 provides a summary of adopted Added Contaminant Levels (ACL) and Ambient Background Concentrations for the derivation of copper, chromium (III), nickel, lead, and zinc EILs. Generic EILs were adopted for ecological assessment in relation to arsenic, DDT and naphthalene. Soil Health-based Screening Levels (HSLs) The NEPM 2013 Soil HSL-A&B thresholds for low-high density residential sites for vapour intrusion would be applied to assess for potential human health impacts from residual vapours resulting from petroleum, BTEX & naphthalene. Soils asbestos results to be assessed against the NEPM 2013 Soil HSL thresholds for "all forms of asbestos". Ecological Screening Levels (ESLs) All soil samples to be assessed against the NEPM 2013 ESLs for selected petroleum hydrocarbons & TRH fractions for protection of terrestrial ecosystems. Management Limits for Petroleum Hydrocarbons Should the ESLs and HSLs be exceeded for petroleum hydrocarbons, soil samples would also be assessed against the NEPM 2013 Management Limits for the TRH fractions F1 – F4 to assess propensity for phase-separated hydrocarbons (PSH), fire and explosive hazards & adverse effects on buried infrastructure.
Groundwater	NEPM, 2013 GILs for Marine Waters NEPM, 2013 Groundwater HSLs for Vapour Intrusion NEPM, 2013 GILs for Drinking purposes	Groundwater Investigation Levels (GILs) for Marine Water NEPM 2013 provides GILs for typical, slightly-moderately disturbed aquatic ecosystems, which are based on the ANZECC & ARMCANZ 2000 Trigger Values (TVs) for the 95% level of protection of aquatic ecosystems; however, the 99% TVs were applied for the bio-accumulative metals cadmium and mercury. The fresh criteria were considered relevant as the closest, potential surface water receptor was Prospect Creek located approximately 1 km south of the site. Health-based Screening Levels (HSLs) The NEPM 2013 groundwater HSLs for vapour intrusion were used to assess for potential human health impacts from residual vapours resulting from petroleum, BTEX and naphthalene impacts. The HSL A and HSL B thresholds for low and medium-density residential sites were applied for groundwater.

Table 6-1 Adopted Investigation Levels for Soil and Groundwater

For the purposes of this investigation, the adopted soil assessment criteria are referred to as the Soil Investigation Levels (SILs) and the adopted groundwater assessment criteria are referred to as the Groundwater Investigation Levels (GILs). SILs and GILs are presented alongside the analytical results in the corresponding summary tables, which are discussed in Section 9.

 Table 7-2
 Generic and Derived Ecological Investigation Levels

Metal	Assumed Values ¹	EIL (mg/kg) ²
Arsenic	Generic EIL	100
Chromium (III)	ABC - 15 mg/kg (assumes an old NSW high traffic suburb) ACL - 190 mg/kg (assumes clay content <1 %)	205
Copper	ABC - 30 mg/kg (assumes an old NSW high traffic suburb) ACL - 60 mg/kg (assumes pH 4.5)	90
DDT	Generic EIL	180
Lead	ABC - 160 mg/kg (assumes an old NSW high traffic suburb) ACL – 1,100 mg/kg	1,260
Naphthalene	Generic EIL	170
Nickel	ABC - 5 mg/kg (assumes an old NSW high traffic suburb) ACL - 30 mg/kg (assumes CEC 5)	35
Zinc	ABC - 120 mg/kg (assumes an old NSW high traffic suburb) ACL - 70 mg/kg (assumes pH 4 & CEC 5)	190

Notes:

ACL - added contaminant limit; ACLs for Urban residential and public open space were used for this project

ABC - ambient background concentration

The most stringent ACL values were adopted for Chromium (III), Copper, Lead, Nickel and Zinc, as site soil physiochemical properties (i.e. pH, CEC and clay content) were not tested (Ref. NEPM 2013 Schedule B1, Tables 1B(1), 1B(2), 1B(3) and 1B(4) Soil-specific added contaminant limits)

¹ Assumed values are based on NEPM 2013 Schedule B5(c) Guideline on Ecological Investigation Levels for Arsenic, Chromium (III), Copper, DDT, Lead, Naphthalene, Nickel & Zinc

² EIL = ABC + ACL, unless Generic EIL is applicable

6.4 SOIL INVESTIGATIONS

The soil investigations conducted at the site are described in Table 6-3. Test bore locations are illustrated in Figure 2.

Table 6-3	Summary of Soi	Investigation	Methodology
-----------	----------------	---------------	-------------

Activity/Item	Details
Fieldwork	The site investigation was conducted on 10 December 2015. Boreholes BH101 to BH118 reached the target depth of natural soils, borehole BH119 did not reached the target depth due to buried slab and/or pipe, which caused auger refusal. Boreholes BH104M, BH106M and BH117M were converted to groundwater monitoring wells.
Drilling Method & Investigation Depth	All soil test bores where drilled using a hydraulic, ute-mounted, Drilled by HartGeo using a truck- mounted, mechanical, 200 mm diameter, solid-flight auger rig.

Page **| 11**

Activity/Item	Details
Soil Logging	Drilled soils were classified in the field with respect to lithological characteristics and evaluated on a qualitative basis for odour and visual signs of contamination. Soil classifications and descriptions were based on Unified Soil Classification System (USCS) and Australian Standard (AS) 4482.1-2005. Bore logs are presented in Appendix C.
Field Observations (including visual and olfactory signs of potential contamination)	 A summary of field observations is provided, as follows: A ash layer was observed in fill material at BH104M ; Fibre cement sheet fragments were observed in surface fill at BH118 and within the gravelled area surrounding this borehole; and Hydrocarbon odours were observed in boreholes BH106 (0.5 – 2.0 mBGL), BH109 (from 0.2 – 0.9 mBGL), BH111 (from 0.5 – 1.8 mBGL), BH114 (from 0.6 – 1.5 mBGL) and BH115 (from 0.2 – 0.6 mBGL).
Soil Sampling	 Soil samples were collected using a dry grab method (unused, dedicated nitrile gloves) & placed into laboratory-supplied, acid-washed, solvent-rinsed glass jars. Blind field duplicates was separated from the primary samples and placed into glass jars. A small amount of duplicate was collected from each soil samples and placed into zip-lock bag for Photo-ionisation Detector (PID) screening. A small amount of duplicate was separated from all fill samples and placed into a zip-lock bag for asbestos analysis.
Decontamination Procedures	Drilling Equipment - The drilling rods were decontaminated between sampling locations with potable water until the augers were free of all residual materials. Sampling Equipment – Samples were collected via hand with a new pair of dedicated nitrile gloves for each sample and placed into laboratory prepared and pre-labelled sample jars.
Sample Preservation	Samples were stored in a refrigerated (ice-filled) chest, whilst on-site and in transit to the laboratory. All samples were submitted and analysed within the required holding period, as documented in laboratory reports discussed in a later section.
Management of Soil Cuttings	Soil cuttings were used as backfill for completed boreholes.
Quality Control & Laboratory Analysis	A number of soil samples were submitted for analysis of previously-identified COPC by SGS Laboratories (SGS). QA/QC testing comprised intra-laboratory duplicates ('field duplicates') tested blind by SGS and an inter-laboratory field duplicate tested blind by Envirolab Services (Envirolab). All samples were transported under strict Chain-of-Custody (COC) conditions and COC certificates and laboratory sample receipt documentation were provided to EI for confirmation purposes, as discussed in Section 9.
Soil Vapour Screening	Screening for potential VOCs in collected soil samples was conducted using a Photo-ionisation Detector (PID) (fitted with a 10.6 eV lamp) at sampling location during the course of the fieldwork.

6.5 GROUNDWATER INVESTIGATIONS

The groundwater investigations conducted at the site are described in Table 6-4. Monitoring well locations are illustrated in Figure 2.

Page | 12

Activity/Item	Details
Fieldwork	Groundwater monitoring wells were installed and developed on 10 December 2015; whereas, water level gauging, well purging, field testing and groundwater sampling was conducted on 15 December 2015.
Well Construction	 Test bores were converted to groundwater monitoring wells as follows: One, 5.80 m deep, onsite, up-gradient well identified as BH104M; One, 5.98 m deep, onsite well identified as BH106M; and One, 5.80 m deep, onsite, down-gradient well identified as BH117M. Drilled by HartGeo using a truck-mounted, mechanical, 200 mm diameter, solid-flight auger rig. Well construction details are tabulated in Table 8-2 and documented in the bore logs presented in Appendix C. All wells were installed to screen the fractured shale aquifer within the interval 3.0 to 6.0 mBGL and were seated extremely weathered shale.
Well Construction (continued)	 Well construction was in general accordance with the standards described in NUDLC, 2012 and involved the following: 50 mm, Class 18 uPVC, threaded, machine-slotted screen and casing, with slotted intervals in shallow wells set to screen to at least 500 mm above the standing water level to allow sampling of phase-separated hydrocarbon product, if present; Base and top of each well was sealed with a uPVC cap; Annular, graded sand filter was used to approximately 300mm above top of screen interval; Granular bentonite was applied above annular filter to seal the screened interval; Drill cuttings were used to backfill the bore annulus to just below ground level; and Surface completion comprised a steel road box cover set in neat cement and finished flush with the concrete slab level / ground level at boreholes BH106M and BH117M. BH104M was completed with a standpipe.
Well Development	Well development was conducted for each well directly following installation. This involved agitation within the full length of the water column using a dedicated, HDPE, disposable bailer. Bailing was continued until no further reduction in suspended sediment was observed (i.e. after removal of several well volumes) or the well became dry.
Well Survey (Elevation and location)	Well elevations at ground level were extrapolated from the spot elevations marked on the survey plan provided by the client (Figure 2). Well elevations at ground level were extrapolated in metres relative to Australian Height Datum (m AHD).
Well Gauging & Groundwater Flow Direction	Monitoring wells BH104M, BH106M and BH117M were gauged for standing water level (SWL, depth to groundwater) prior to well purging at the commencement of the GME on 15 December, 2015. All measured SWLs are shown in Table 8-2. A transparent HDPE bailer was used to visually assess for the presence PSH which was not detected in any of the wells. Based on the reduced water levels (RWLs, i.e. SWLs corrected to AHD) calculated at each monitoring well (Table 8-3). The direction of groundwater flow in the shallow aquifer was inferred to be in an easterly direction.

Summary of Groundwater Investigation Methodology Table 6-4

Page | 13

Activity/Item	Details
Well Purging, Field Testing & Groundwater Sampling	All groundwater monitoring wells were purged and sampled using low-flow/minimal drawdown sampling method with a MicroPurge kit (MP15) and a portable MicroPurge pump following well gauging.
	The MicroPurge system incorporates a low density poly-ethylene (LDPE) pump bladder, and a Teflon-lined LDPE sample delivery tube. The system used for this investigation employed pressurised carbon dioxide gas to regulate groundwater flow. Pump pressure and pumping cycles were adjusted accordingly to regulate extraction flow rate, and to avoid causing excessive drawdown of water level during the sampling process.
	Field measurement of water quality parameters was conducted continuously on purged groundwater with a water quality meter (Hanna Multi Parameter 9829) positioned within an open flow-through cell. Groundwater parameters tested in the field were Dissolved Oxygen (DO), Electrical Conductivity (EC), Redox, Temperature and pH. The measured parameters were recorded onto a field data sheet (Appendix D), along with the purged water volume at the time of measurement.
	Groundwater sampling was performed when three consecutive readings of groundwater parameter indicated stabilisation; as per the specified ranges detailed below:
	Electrical Conductivity: ± 3% of the read value;
	• Redox: ± 20 mV;
	• DO: ± 20% of the read value; and
	• pH: ± 0.2 pH unit.
	Total water volume purged and stabilised groundwater parameters at each groundwater monitoring well are summarised in Table 8-3.
Decontamination Procedure	 Decontamination was not required as sampling equipment was stored and transported prior to use in factory-sealed, plastic sleeves, while each bailer was dedicated to each individual well. All sample containers were supplied by the laboratory for the particular project and only opened once immediately prior to sampling. While ice was used to keep the samples cool, all melt water was continuously drained from the Esky to prevent cross-contamination of samples. The water level probe and water quality kit probes were washed in a solution of potable water and Decon 90 and then rinsed with potable water between measurements/wells.
Sample Preservation	Sample containers were supplied by the laboratory with the following preservatives:
	 One, 1 litre amber glass, acid-washed and solvent-rinsed bottle; Two 40ml place viele, and preserved with dilute hydrophlatic sold. Tofler, evelod, and
	 Two, 40ml glass vials, pre-preserved with dilute hydrochloric acid, Teflon-sealed; and One, 250mL, HDPE bottle, pre-preserved with dilute nitric acid (1 mL).
	• One, 250mL, HDPE bottle, pre-preserved with didte hitric acid (TmL). Samples for metals analysis were field-filtered using 0.45 μ m pore-size filters. All containers were filled with sample to the brim then capped and stored in ice-filled chests, until completion of the fieldwork and during sample transit to the laboratory.
Quality Control & Laboratory Analysis	All groundwater samples were submitted for analysis of previously-identified chemicals of concern by SGS Laboratories (SGS). QA/QC testing comprised intra-laboratory duplicates ('field duplicates') tested blind by SGS and an inter-laboratory field duplicate tested blind by Envirolab Services (Envirolab). All samples were transported under strict Chain-of-Custody (COC) conditions and COC certificates and laboratory sample receipt documentation were provided to EI for confirmation purposes.
Sample Transport	After sampling, refrigerated sample chests were transported to SGS Australia Pty Ltd using strict Chain-of-Custody (COC) procedures. Inter-laboratory duplicate (ILD) samples were forwarded to Envirolab Services Pty Ltd (Envirolab) for QA/QC analysis. A Sample Receipt Advice (SRA) was provided by each laboratory to document sample condition upon receipt. Copies of SRA and COC certificates are presented in Appendix E.

7. DATA QUALITY ASSESSMENT

The assessment of data quality is defined as the scientific and statistical evaluation of environmental data to determine if these data meet the objectives of the project (Ref. US EPA, 2006). Data quality assessment includes an evaluation of the compliance of the field sampling and laboratory analytical procedures and an assessment of the accuracy and precision of these data from the laboratory quality control measurements obtained.

The data quality assessment process for this assessment included a review of analytical procedures to confirm compliance with established laboratory protocols and an assessment of the accuracy and precision of analytical data from a range of quality control measurements. The QC measures generated from the field sampling and analytical program were as follows:

- Suitable records of fieldwork observations including borehole logs;
- Relevant and appropriate sampling plan (density, type, and location);
- Use of approved and appropriate sampling methods;
- Preservation and storage of samples upon collection and during transport to the laboratory;
- Complete field and analytical laboratory sample COC procedures and documentation;
- Sample holding times within acceptable limits;
- Use of appropriate analytical procedures and NATA-accredited laboratories; and
- Required LOR (to allow for comparison with adopted IL);
- Frequency of conducting quality control measurements;
- Laboratory blanks;
- Field duplicates;
- Laboratory duplicates;
- Matrix spike/matrix spike duplicates (MS/MSDs);
- Surrogates (or System Monitoring Compounds);
- Analytical results for replicated samples, including field and laboratory duplicates and inter-laboratory duplicates, expressed as Relative Percentage Difference (RPD); and
- Checking for the occurrence of apparently unusual or anomalous results, e.g. laboratory results that appear to be inconsistent with field observations or measurements.

The findings of the data quality assessment in relation to the soil and groundwater investigations at the site are discussed in detail in Appendix G. QA/QC policies and DQOs are presented in Appendix H.

On the basis of the analytical data validation procedure employed the overall quality of the soil and groundwater analytical data produced for the site were considered to be of an acceptable standard for interpretive use.

8. RESULTS

8.1 SOIL INVESTIGATION RESULTS

8.1.1 Site Geology and Subsurface Conditions

The general site geology encountered during the drilling of the soil investigation boreholes, installation of monitoring wells may be described as a layer of anthropogenic filling overlying Residual Clays and Bringelly Shale at depth. The geological information obtained during the investigation is summarised in Table 8-1 and borehole logs from these works are presented in Appendix C.

Layer	Description	Depth to top & bottom of layer (mBGL)
		BH101 – BH119
Fill	Clayey SAND, fine grained, orange to brown, grading to dark brown, with gravel. SAND, fine to medium grained, orange.	0.0 – 1.1
Residual Clays	Silty CLAY; orange to grey, medium to high plasticity, with ironstone mottles.	0.2 – 1.7 (max depth 2.7 m)
	Silty CLAY; grey, medium plasticity, extremely weathered shale.	0.7 – 2.4
Bedrock	Shale, extremely weathered, grey, grading to brown.	0.9+ (BH104M, BH106M, BH109, BH113, BH114, BH115, BH116, BH117M)

Table 8-1 Generalised Subsurface Profile

Notes: + Termination depth of borehole

8.1.2 Field Observations and PID Results

Soil samples were obtained from the test bores at various depths ranging between 0.0 m to 13.2 mBGL. All examined soil samples were evaluated on a qualitative basis for odour and visual signs of contamination (e.g. hydrocarbon odours, oil staining, petrochemical filming, asbestos fragments, ash, charcoal) and the following observations were noted:

- A ash layer was observed in fill material at BH104M;
- Fibre cement sheet fragments were observed in surface fill at BH118 and within the gravelled area surrounding this borehole; and
- Hydrocarbon odours were recorded at the following test borehole locations:
 - BH106 (0.5 2.0 mBGL);
 - BH109 (from 0.2 0.9 mBGL);
 - BH111 (from 0.5 1.8 mBGL);

Environmental Investigations Australia Contamination | Remediation | Geotechnical

- BH114 (from 0.6 1.5 mBGL); and
- BH115 (from 0.2 0.6 mBGL).
- Elevated VOC concentrations were detected in BH114 with concentrations of 39.1 parts per million (ppm) at a depth of 1.0 1.1 mBGL. This was consistent with a strong hydrocarbon odour observed within the sample. The PID results are shown in the borehole logs (Appendix C) and the samples showing higher PID values were therefore assigned for laboratory VOC and SVOC analysis.

8.2 GROUNDWATER INVESTIGATION RESULTS

8.2.1 Monitoring Well Construction

Well construction details for the installed groundwater monitoring wells are summarised in Table 8-2.

Well ID	Bore Depth (mBGL)	RL (GL)	RL (TOC)	Screen Interval (mBGL)	Lithology Screened
BH104M	6.00	30.40	30.62	3.0 - 6.0	Shale
BH106M	5.95	30.81	30.67	2.95 - 5.95	Shale
BH117M	5.80	29.27	29.14	2.80 – 5.80	Shale

Table 8-2 Monitoring Well Construction Details

Notes:

mBGL - metres below ground level.

RL - Reduced Level – Surveyed elevation in metres relative to Australian Height Datum (mAHD).

TOC - top of well casing

RL (TOC) - Surveyed elevation at TOC in m AHD.

8.2.2 Field Observations and Water Test Results

A GME was conducted on monitoring wells on 15 December 2015. Standing water levels (SWLs) were measured within each well prior to well purging, the results of which were recorded with well purge volumes and field-based water test results. A summary of the recorded field data is presented in

Table 8-3 and copies of the completed Field Data Sheets are included in Appendix D.

Page | 17

Table 8-3 Groundwater Monitoring Event Field Data

Well ID	SWL (mBTOC)	RL (TOC)	WL † (mAHD)	Purge Volume (L)	Field pH	Field EC (~S/cm)	Temp (ºC)	Redox (mV)	Odours / Turbidity / Sheen
BH104M	1.940	30.62	28.680	4.0	5.53	30,240	24.31	151.7	None / Clear / None
BH106M	1.624	30.67	29.046	4.5	6.51	13,480	25.61	51.40	None / Slight / None
BH117M	0.658	29.14	28.482	4.0	6.47	20,640	31.92	51.5	None / Slight / None

Notes:

SWL - Standing Water Levels as measured from TOC (top of well casing) prior to groundwater sampling.

mBTOC - metres below top of well casing

RL (TOC) - Reduced Level, elevation at TOC in metres relative to Australian Height Datum (mAHD).

+ WL = Calculated groundwater level, in m AHD (calculated as RL – SWL) Note: these values were used for groundwater contouring analysis.

L - litres (referring to volume of water purged from the well prior to groundwater sample collection).

EC – groundwater electrical conductivity as measured onsite using portable EC meter.

µS/cm – micro Siemens per centimetre (EC units).

DO - Dissolved Oxygen in units of milligrams per litre (mg/L)

All groundwater parameters (pH, EC and DO) were tested on site.

With reference to Table 8-3, the field pH data indicated that the groundwater was slightly acidic (pH ranged from 5.53 to 6.51). Electrical Conductivity (EC) measurements were recorded in the range 13,480 to 30,240 μ S/cm indicating that the groundwater was saline in terms of water salinity.

Based on the reduced water levels (RWLs, i.e. SWLs corrected to AHD) calculated at each monitoring well (Table 9-3). The direction of groundwater flow in the shallow aquifer was inferred to be in an easterly direction.

8.3 LABORATORY ANALYTICAL RESULTS

8.3.1 Soil Analytical Results

A summary of laboratory results showing test sample quantities, minimum/maximum analyte concentrations and samples found to exceed the SILs, is presented in Table 8-4. More detailed tabulations of results showing the tested concentrations for individual samples alongside the adopted soil criteria are presented in Table T1 at the end of this report. Completed documentation used to track soil sample movements and laboratory receipt (i.e. COC and SRA forms) are copied in Appendix E and all laboratory analytical reports for tested soil samples are presented in Appendix F.

No. of primary samples	Analyte	Min. Conc. (mg/kg)	Max. Conc. (mg/kg)	Sample locations exceeding investigation levels
TRH				
29	F1 (C ₆ –C ₉)	<25	<25	None
29	F2 (C ₁₀ -C ₃₆)	<50	510	Exceedance above the HSL criteria for BH114_1.0-1.1 (510 mg/kg).
29	F3 (C1 ₆ -C ₃₄)	<90	270	None
29	F4 (C ₃₄ -C ₄₀)	<120	<120	None
BTEX				
28	Benzene	<0.1	<0.1	None
28	Toluene	<0.1	<0.1	None
28	Ethyl benzene	<0.1	<0.1	None
28	Total xylenes	<0.3	<0.3	None
28	Benzo(a)pyrene	<0.1	<0.1	None
OCPs				
21	OCPs excluding Chlordane and trans- Nonachlor	ND	ND	None
21	Chlordane	ND	0.4	None
21	Trans-Nonachlor	<0.1	0.1	None
OPPs				
21	Total OPPs	ND	ND	None detected
Heavy Metal				
28	Arsenic	3	12	None
28	Cadmium	<0.3	1.4	None
28	Chromium (Total)	9	78	None
28	Copper	9.3	61	None
28	Lead	12	150	

Table 8-4 Summary of Soil Analytical Results

No. of primary samples	Analyte	Min. Conc. (mg/kg)	Max. Conc. (mg/kg)	Sample locations exceeding investigation levels					
28	Mercury	<0.01	0.05	None					
28	Nickel	1.1	50	Exceedance above the EIL criteria: BH117_0.0-0.1 (50 mg/kg)					
28	Zinc	8.8	480	Exceedances above the EIL criteria BH105_0.0-0.1 (480 mg/kg), BH108_0.2-0.3 (220 mg/kg), BH118_0.4-0.5 (200 mg/kg).					
PCBs									
21	Total PCBs	<1	<1	None					
Asbestos									
23 Asbestos		No asbestos detected	Asbestos detected	Asbestos detected in BH117M_1.0-1.1 and BH118_0.0-0.1					

8.4 **GROUNDWATER ANALYTICAL RESULTS**

A summary of laboratory results showing test sample quantities, minimum/maximum analyte concentrations and samples found to exceed the GILs, is presented in Table 8-5. More detailed tabulations of results showing the tested concentrations for individual samples alongside the adopted groundwater criteria are presented in Table T2 at the end of this report. Completed documentation used to track groundwater sample movements and laboratory receipt (COC and SRA forms) are copied in Appendix E. Copies of the laboratory analytical reports are attached in Appendix F.

Page | 20

No. of primary samples	Analyte	Min. Conc. (mg/kg)	Max. Conc. (mg/kg)	Sample locations exceeding investigation levels
Hydrocarbons				
3	F1 C ₆ –C ₁₀	<50	<50	None
3	F2 C ₁₀ -C ₁₆	<60	<60	None
3	F3 C ₁₆ -C ₃₄	<500	<500	None
3	F4 C ₃₄ -C ₄₀	<500	<500	None
3	Benzene	<0.5	<0.5	None
3	Toluene	<0.5	<0.5	None
3	Ethyl benzene	<0.5	<0.5	None
3	o-xylene	<0.5	<0.5	None
3	Total xylenes	<1	<1	None
PAHs				
3	Total PAHs	<1	<1	None
Heavy Metal				
3	Arsenic	<1	4	None
3	Cadmium	0.1	1.9	Exceedance of the GILs: BH104M (1.9 µg/L)
3	Chromium (Total)	<1	<1	None
3	Copper	3	10	Exceedance of the GILs: BH104M (10 μg/L), BH106M (9 μg/L) and BH117M (3 μg/L).
3	Lead	<1	<1	None
3	Mercury	<0.1	<0.1	None
3	Nickel	16	160	Exceedance of the GILs for BH104M (160 µg/L), BH106M (39 µg/L) and BH117M (16 µg/L).
3	Zinc	140	2,600	Exceedance of the GILs for BH104M (2,600 µg/L), BH106M (140 µg/L) and BH117M (180 µg/L).
VOCs				
3	Total VOCs	ND	ND	None

Table 8-5Summary of Groundwater Analytical Results

9. SITE CHARACTERISATION DISCUSSION

9.1 ASBESTOS RISK

Asbestos was reported in fill material in samples BH117_0.0-0.1 and BH118_0.0-0.1. Fibrous asbestos was detected in BH117 with four (4), 2-4 mm length fibre bundles found loose in the sample, with 2 – 8 mm fibre bundles found in 30x20x4 mm cement sheet fragment in BH118. This is consistent with observations made within the area of these boreholes, which included crushed asbestos fibro pieces distributed throughout the gravelled car-park area located in the south western corner of the site. Vertical delineation was achieved, with no asbestos detected in the deeper fill samples BH117_1.0-1.1 and BH118-1.0-1.1 from both boreholes, indicating that the asbestos contamination is likely to be confined to the upper layer of fill material in that area. In addition, super-six asbestos sheeting was identified within the northern portion of the site and on existing building structures.

Given the identification of free asbestos fibres in soils, in addition to the presence of fragmented bonded asbestos, there is a potential risk of exposure to receptors should free fibres become airborne. El recommend that further investigation of asbestos contamination identified at BH117 and BH118 (in the southern portion of the site) and in northern site areas is completed to further characterise and delineate the extent of asbestos for establishing the most suitable methodology for remediation.

9.2 TRH & BTEX IN SOIL

As described in Section 4, UPSS have been identified in the north-western area of the site (Figure 2). Based on information provided in the previous Stage 1 Environmental Site Assessment (CES, 2015), two USTs were present on site and used to store kerosene (30,000 L) and diesel (12,000 L). Borehole / groundwater monitoring well BH16M was installed down gradient of these identified USTs. No exceedances of TRH were reported above adopted HIL-B criteria in the investigation within soil samples and groundwater of BH106M. However, it is likely that the soils surrounding the UPSS have been impacted in some degree by hydrocarbons derived from the UPSS and associated infrastructure.

Total Recoverable Hydrocarbon (TRH) contamination was identified within soil sample BH114_1.0-1.1, with the concentration of the F2 fraction (> C_{10} - C_{16}) being above the adopted HSL-A & B and ESL criteria. Vertical delineation was achieved with the concentration of the F2 fraction in the deeper natural sample (BH114_1.6-1.7) being below the HSL-A & B and ESL criteria (98 mg/kg). This detection of TRH in borehole BH114 is consistent with field observations made during sampling, were a strong hydrocarbon odour was detected from depths of 0.6-1.5 mBGL, and elevated VOC concentration (39.1 ppm) detected via PID analysis at depths of 1.0 – 1.1 mBGL.

Hydrocarbon odours were also observed within soil samples at test boreholes BH106 (0.5 – 2.0 mBGL), BH109 (from 0.2 – 0.9 mBGL), BH111 (from 0.5 – 1.8 mBGL) and BH115 (from 0.2 – 0.6 mBGL). Although no elevated TRH concentrations were detected in soil samples analysed from these boreholes, further investigation into the source of the hydrocarbon odour is required as these boreholes are not located within close proximity to the known UPSS on site. i.e. whether the detected contamination was contributed to by vertical migration of contamination from the UPSS located further up-gradient, or by unknown contaminating underground infrastructure.

Therefore, EI recommend that all UPSS facilities shall be decommissioned, removed from the site and the soils in proximity be validated for their suitability of site redevelopment, in accordance with the Technical Note: Investigation of Service Station Sites (NSW EPA, 2014). If any TRH impacted material is identified, this material shall be excavated and managed separately for offsite disposal during bulk excavation works. In addition, further investigation into the source of hydrocarbon contamination at BH114 and staining and odours identified at BH109, BH111, and BH115, will be required.

No exceedances were detected for BTEX in any of the soil samples analysed during this investigation.

9.3 HEAVY METALS IN SOIL

Heavy metal concentrations detected above the adopted ecological criteria were identified at the following locations:

- BH105_0.0-0.1 exceedance for zinc (480 mg/kg), vertical delineation was not achieved
- BH108_0.2-0.3 exceedance for zinc (220 mg/kg), vertical delineation was not achieved
- BH117M_0.0-0.1 exceedance for nickel (50 mg/kg), vertical delineation was achieved, with the deeper sample BH117M_1.0-1.1 being below the EIL criteria. This suggests that the elevated concentrations of nickel are likely to be confined to the fill material within that area.
- BH118_0.4-0.5 exceedance for zinc (200 mg/kg), vertical delineation was not achieved.

As no basement level is proposed, EI recommends further delineation and remediation of these exceedances via the implementation of a Remediation Action Plan (RAP).

9.4 OCPs & OPPs IN SOIL

No exceedances of OCPs or OPPs above the HIL-A or EIL criteria were detected in soil samples analysed during this investigation. All concentrations were below the LOR with the exception of chlordane (0.4 mg/kg) and transnonachlor (0.1 mg/kg) in soil sample BH119_0.0-0.1. As these detections are at concentrations below the adopted soil criteria, they are not expected to pose a risk to human health and/or the environment.

9.5 HEAVY METALS, VOCS AND TRH IN GROUNDWATER

The following elevated heavy metal concentrations were identified in the groundwater monitoring wells installed at the site:

- Exceedances of cadmium in BH104M (1.9 μg/L);
- Exceedances of copper in BH104M (10 μg/L), BH106M (9 μg/L) and BH117M (3 μg/L);
- Exceedances of nickel in BH104M (160 μg/L), BH106M (39 μg/L) and BH117M (16 μg/L); and
- Exceedances of zinc in BH104M (2,600 μg/L), BH106M (140 μg/L) and BH117M (180 μg/L).

No exceedances of TRH or VOCs were detected in groundwater monitoring wells sampled during this investigation, including from groundwater bore BH106M adjacent to identified USTs. We note, however, that F2 TRH concentrations exceeding HSL A&B soil criteria were reported in test bore BH114, and staining and strong

hydrocarbon odours were also identified in bores BH109, BH111, and BH115, located in proximity to BH114. In light of this, additional groundwater assessment should be performed in this area of the site to characterise groundwater quality and any hydrocarbon contamination should it be present.

The results of the groundwater investigation indicate that high nickel and zinc concentrations are present in groundwater in BH104M, compared to monitoring wells BH106M and BH117M. Based on the inferred south / south-west groundwater flow direction, BH104M is inferred to be located at the up hydraulic gradient site boundary, and therefore, elevated heavy metal concentrations reported may be attributed to an offsite source to the north of the site

With respect to the identified groundwater contamination, as the proposed low density residential development does not involve the construction of a basement level car-park, with no beneficial groundwater abstraction likely due to groundwater quality, it is unlikely that a complete groundwater exposure pathway will exist onsite, and as such, the risks to site receptors is considered to be low.

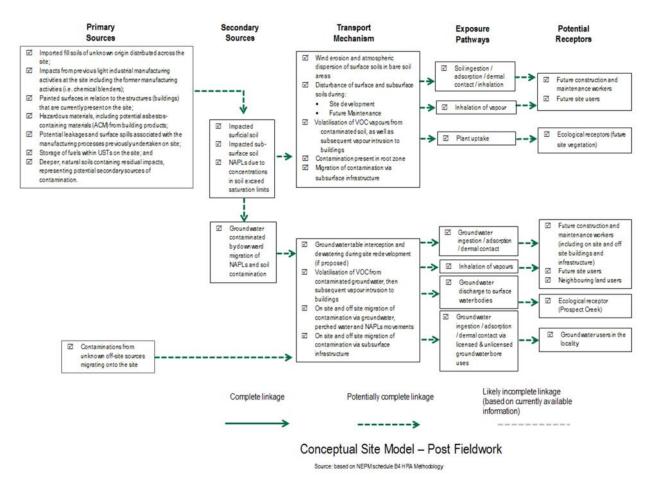
While there is likely to be a low risk of exposure to site receptors from heavy metals in groundwater, we recommend that a second round of groundwater sampling should be performed to confirm elevated heavy metal results reported in this investigation. The installation of additional groundwater wells may also be required to assist with confirming an offsite source of the contamination.

9.6 REVISED CONCEPTUAL SITE MODEL - POST FIELD INVESTIGATION

The preliminary CSM discussed in Section 5 was considered appropriate to identify contamination sources, migration mechanisms and exposure pathways, as well as potential onsite and offsite receptors, on the basis of the findings from this investigation. Revisions of the model in regard to chemicals of concern, exposure pathways and potential receptors, however, were made in light of the field investigation findings with respect to the proposed development. The revised CSM is presented below:

9.6.1 Contaminants of Concern

The following chemicals are considered of concern for the site and the proposed development, with due consideration given to the currently available information:


- Soil (health related risks) –heavy metals, TRH, BTEX, VOCs, and asbestos;
- Soil (ecological related risks) heavy metals (zinc and nickel), TRH, BTEX; and
- Groundwater HMs, TRH, BTEX, VOCs.

9.6.2 Potential Sources, Exposure Pathways and Receptors

An amended CSM figure summarising potential contamination sources, exposure pathways, and human and environmental receptors based on currently available information is presented as Figure 10-1.

Page | 24

Figure 10-1 Revised Post-Fieldwork Conceptual Site Model

9.6.3 Data Gaps

The following remaining data gaps will require closure by further investigation:

- The spatial extent of asbestos, TRH and heavy metal contamination exceeding adopted human-health and ecological criteria at boreholes identified across the site;
- Further investigation is required to identify the source of hydrocarbon contamination at BH114 and staining and odours identified at BH109, BH111, and BH115 (i.e. whether the detected contamination was contributed to by vertical migration of contamination from the UPSS located further up-gradient, or by unknown contaminating underground infrastructure);
- Further investigation is required to establish the number of UPSS on site and to identify any additional UPSS and pipework, particularly pipework supplying former site operations within manufacturing warehouses;
- Groundwater quality in proximity to BH114 with regard to potential hydrocarbon contamination of groundwater;
- Confirmation of groundwater flow direction by the surveying of each individual well at the site;
- Confirmation of reported heavy metal concentrations in groundwater and verification of an offsite source of groundwater contamination;

Environmental Investigations Australia Contamination | Remediation | Geotechnical

- The quality of soils located in the footprint of the former residential dwelling located within the southern portion of the site; and
- Potential presence of hazardous materials present within the existing structure.

10. CONCLUSIONS

The property located at 37-39 Pavesi Street, Guildford West was the subject of a Detailed Site Investigation in order to assess the potential for on-site contamination associated with the identified current and former land uses. Based on the findings of this assessment it was concluded that:

- The site comprised a rectangular shaped block, covering a total area of approximately 8,050 m². The site is currently occupied by a large, commercial warehouse and former residential dwelling. The proposed development will involve the demolition of existing site structures and the construction of low density residential houses.
- A previous Stage 1, Preliminary Site Investigation was undertaken for the site by Consulting Earth Scientists in August, 2015, and identified the following:
 - The site and surrounding areas have a mixed history of industrial and commercial land use;
 - A previous environmental assessment was undertaken for Lot 36 DP10958 in 2007 by WSP Environmental Pty Ltd. This investigation identified that the site was previously used as a chemical blending facility. Two USTs were used to store kerosene (30,000 L) and diesel (12,000 L). In addition, three redundant USTs were also identified, located close to the eastern boundary, of which were installed by a trucking company who operated the site during the 1960s and 1970s. Anecdotal evidence from site representatives reported that the USTs were decommissioned and filled with water in the 1980s;
 - Potentially contaminating land use activities that were identified included:
 - Application of uncontrolled fill on the site;
 - Storage of chemicals on site associated with former manufacturing processes that took place (i.e. chemical blenders);
 - Leakages and surface spills associated within manufacturing processes on site;
 - Storage of fuels within the USTs and associated pipe work / fuel lines throughout the warehouse/site; and
 - Demolition of former site structures possibly constructed from hazardous building materials.
- Soil sampling and analysis was conducted at nineteen (19) targeted test bore locations (BH101 BH119) down to a maximum depth of 5.98 m BGL. Sampling regime comprised judgemental and systematic (triangular grid) sampling patterns, with allowance for structural obstacles (e.g. building walls, underground and overhanging services and other physical obstructions in use by existing operating businesses);
- Boreholes BH104M, BH106M and BH117M were converted to groundwater monitoring bores;
- The sub-surface layers comprised of fill materials of various constituents, underlain by residual clays, with the Bringelly Shale at depth;

- Groundwater was encountered at depths ranging from 5.0 5.2 mBGL within the weathered Bringelly Shale;
- Results of soil samples analysed identified bonded and fibrous asbestos in surface fill samples at boreholes BH117 and BH118 located within the south western portion of the site. Vertical delineation was achieved, with the deeper fill samples being free of asbestos containing material, indicating that asbestos contamination is likely to be confined to the upper fill layer within the area. This is consistent with observations made within the vicinity of these boreholes, which included crushed asbestos fibro pieces distributed throughout the gravelled car-park area located in the south western corner of the site;
- Exceedances of heavy metals above the adopted EIL criteria were detected in soil samples at four borehole locations across the site. As accessible soils will be present with the proposed land use, EI recommends appropriate delineation and remediation in order to mitigate future impacts to the ecological environment;
- An exceedance of the F2 (>C₁₀-C₁₆)) TRH fraction above the HSL A&B and ESL criteria was identified in soil sample BH114_1.0-1.1 (510 mg/kg). Vertical delineation was achieved with the concentration of the deeper sample (BH114_1.6-1.7) being below the HSL A&B and ESL criteria. BH114 was not located within close vicinity of the known UPSS tank farm, therefore indicating the potential for an additional UPSS or unknown source of TRH to be present on site;
- Hydrocarbon odours were observed in soil sample sat test boreholes BH106 (0.5 2.0 mBGL), BH109 (from 0.2 0.9 mBGL), BH111 (from 0.5 1.8 mBGL) and BH115 (from 0.2 0.6 mBGL). Although no elevated TRH concentrations were detected in soil samples analysed from these boreholes, the source of the odour is unknown;
- There were no exceedances of PAHs, BTEX,OCPs, OPPs and PCBs in soil samples analysed during this investigation; and
- Elevated concentrations of heavy metals were detected in groundwater monitoring wells BH104M, BH106M and BH117M. Based on the inferred groundwater flow direction to the east, the presence of elevated background heavy metal concentrations within groundwater indicates that high metal concentrations may be attributable to an offsite source.
- On review of the Preliminary Conceptual Site Model (CSM) developed as part of this ESA, it was concluded that the model remains valid for the proposed development. The following data gaps however remain and require closure by further investigations:
 - The spatial extent of asbestos, TRH and heavy metal contamination exceeding adopted human-health and ecological criteria at boreholes identified across the site;
 - The source of hydrocarbon contamination at BH114 and staining and odours identified at BH109, BH111, and BH115 (i.e. whether the detected contamination was contributed to by vertical migration of contamination from the UPSS located further up-gradient, or by unknown contaminating underground infrastructure);
 - Groundwater quality in proximity to BH114 with regard to potential hydrocarbon contamination of groundwater;
 - Further investigation is required to establish the number of UPSS on site and to identify any additional UPSS and pipework, particularly pipework supplying former site operations within manufacturing warehouses; and

- Confirmation of reported heavy metal concentrations in groundwater and verification of an offsite source of groundwater contamination.
- Groundwater flow direction requires confirmation in order to appropriately assess the risks associated with groundwater contamination and potential on / off-site sources. Confirmation can be achieved via the surveying of each well;
- The quality of soils located in the footprint of the former residential dwelling located within the southern portion of the site; and
- Potential presence of hazardous materials present within the existing structure.

Based on the findings of this report and with consideration of the Statement of Limitations (Section 12), EI conclude that contamination was identified at the site during this DSI. Concentrations exceeding human health based SILs were identified in surface fill and residual clay material within the south western and central eastern areas of the site. Heavy metal groundwater contamination, possibly associated with an off-site source, was also identified within the northern portion of the site.

While soil and groundwater contamination was identified at the site, EI concludes the site can be remediated in accordance with SEPP 55 to allow the site to be used for low density residential purposes, as outlined in the proposed development plans, subject to the implementation of the recommendations outline in Section 11.

11. RECOMMENDATIONS

Based on the findings of this investigation, the following recommendations are provided:

- Prior to site demolition, carry out a Hazardous Materials Survey on existing site structures to identify potentially hazardous building products that may be released to the environment during demolition;
- Preparation and implementation of a Remedial Action Plan (RAP), which should:
 - Outline the remediation requirements for soil and groundwater contamination identified and to close the existing data gaps identified during this DSI and other contamination that may be identified during data gap closure investigations;
 - Provide methodology for the appropriate decommissioning, removal and validation of the UPSS on site, in accordance with the Technical Note: Investigation of Service Station Sites (NSW EPA, 2014);
 - Provide the requirements and procedure for waste classification assessment, in order to enable classification of site soils to be excavated and disposed off-site, in accordance with the Waste Classification Guidelines (EPA, 2014); and
 - Provide a SAQP for the validation of remediation activities performed on-site.
- Undertake supplementary investigations, and subsequent remediation and validation works for the site, as
 outlined in the RAP. EI note that due to current site constrains, the additional investigations and remediation
 works may be conducted after site demolition when access to areas of environmental concern is made
 available; and
- Preparation of a validation report by a suitably qualified environmental consultant, certifying site suitability of soils and groundwater for the proposed land use.

12. STATEMENT OF LIMITATIONS

This report has been prepared for the exclusive use of [the client], who is the only intended beneficiary of EI's work. The scope of the investigations carried out for the purpose of this report is limited to those agreed with Bimioba Investments Trust on 26 November, 2015.

No other party should rely on the document without the prior written consent of EI, and EI undertakes no duty, or accepts any responsibility or liability, to any third party who purports to rely upon this document without EI's approval.

EI has used a degree of care and skill ordinarily exercised in similar investigations by reputable members of the environmental industry in Australia as at the date of this document. No other warranty, expressed or implied, is made or intended. Each section of this report must be read in conjunction with the whole of this report, including its appendices and attachments.

The conclusions presented in this report are based on a limited investigation of conditions, with specific sampling locations chosen to be as representative as possible under the given circumstances.

El's professional opinions are reasonable and based on its professional judgment, experience, training and results from analytical data. El may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified by El.

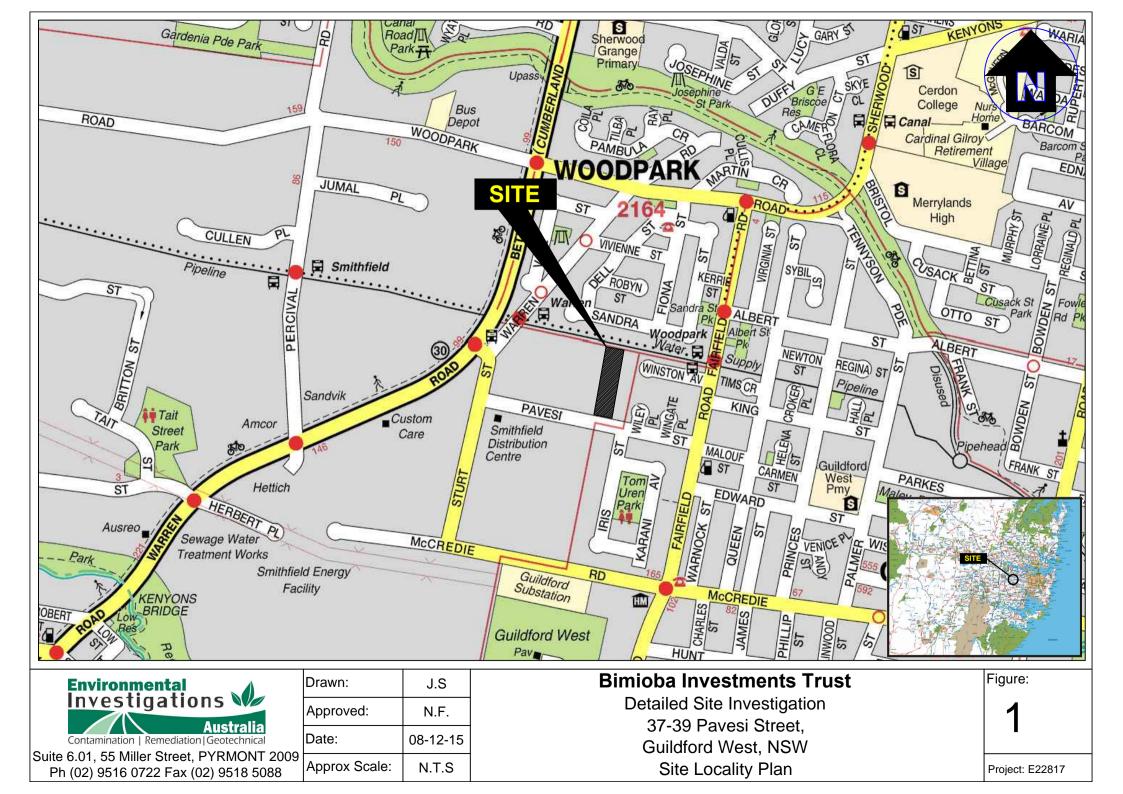
El's professional opinions contained in this document are subject to modification if additional information is obtained through further investigation, observations, or validation testing and analysis during remedial activities. In some cases, further testing and analysis may be required, which may result in a further report with different conclusions.

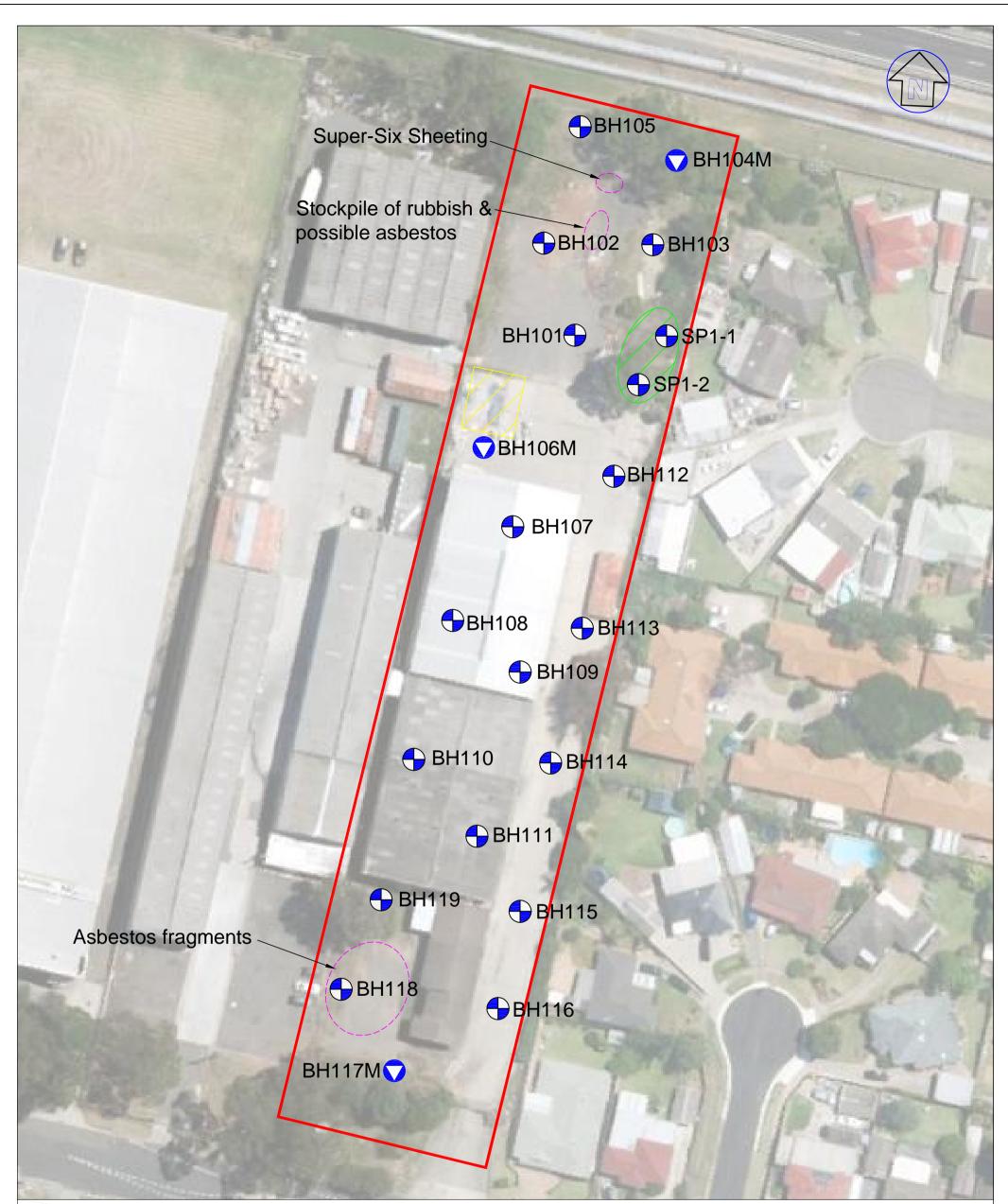
REFERENCES

- ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, October 2000.
- Ahern C R, Stone, Y, and Blunden B (1998) Acid Sulfate Soils Assessment Guidelines, part of the ASS Manual, Acid Sulfate Soil Management Advisory Committee (ASSMAC), Wollongbar, NSW, Australia, 28 August 1998, 59 p.
- Australian Standard (2005) Table E1 Minimum sampling points required for site characterisation, in Guide to the investigation and sampling of sites with potentially contaminated soil – Part 1: Non-volatile and semi-volatile compounds, Standards Australia, AS 4482.1-2005, p45.
- Chapman, G.A. and Murphy, C.L. (1989) Soil Landscapes of the Sydney 1:100 000 sheet, Soil Conservation Service of NSW, Sydney, September 1989.
- DEC (2006) Soil Investigation Levels for Urban Development Sites in NSW, in Guidelines for the NSW Site Auditor Scheme, 2nd Edn., NSW Dept. of Environment and Conservation, DEC 2006/121, April 2006.
- DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination, Dept. of Environment and Conservation, New South Wales, DEC 2007/144, June 2007.
- DECCW (2009) Waste Classification Guidelines, Department of Environment, Climate Change and Water, New South Wales, DECCW 2009/806, December 2009.
- DMR (1983) Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1) Geological Survey of New South Wales, Department of Mineral Resources.
- EPA (2014) Technical Note: Investigation of Service Station Site Environment Protection Authority of New South Wales, EPA 2014/0315, April 2014.
- EPA (1995) Sampling Design Guidelines Environment Protection Authority of New South Wales, Contaminated Sites Unit, EPA 95/59, September 1995.
- Naylor SD, Chapman GA, Atkinson G, Murphy CL, Tulau MJ, Flewin TC, Milford HB and Morand DT (1998) Guidelines for the Use of Acid Sulfate Soil Risk Maps, Department of Land and Water Conservation, Sydney, Second Edition.
- NEPM (2013) Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, Schedule B2 Guideline on Site Characterisation and Schedule B4 Guideline on site-specific health risk assessments, National Environmental Protection (Assessment of Site Contamination) Measure 1999, National Environmental Protection Council, December 1999, Amendment 2013.
- OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites, NSW Office of Environment and Heritage (OEH), OEH 2011/0650, 23 p
- USEPA (2006) Data Quality Assessment: A Reviewers Guide EPA QA/G-9R. USEPA Office of Environmental Information, EPA/240/B-06/002, February 2006.
- WADOH (2009) Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia. Published by the Western Australian Department of Health, May 2009.
- WHO (1996) Guidelines for Drinking Water Quality, World Health Organisation, 1996.

ABBREVIATIONS

ACM	Asbestos-containing materials
ASS	Acid sulfate soils
ANZECC	Australian and New Zealand Environment Conservation Council
ARMCANZ	Agriculture and Resource Management Council of Australia and New Zealand
B(a)P	Benzo(a)pyrene (a PAH compound)
BH	Borehole
BTEX	Benzene, Toluene, Ethylbenzene, Xylene
COC	Chain of Custody
DEC	Department of Environment and Conservation, NSW (see OEH)
DECC	Department of Environment and Climate Change, NSW (see OEH)
DECCW	Department of Environment, Climate Change and Water, NSW (see OEH)
DA	Development Application
DO	Dissolved Oxygen
DP	Deposited Plan
EC	Electrical Conductivity
Eh	Redox potential
EPA	Environment Protection Authority
F1	TRH $C_6 - C_{10}$ less the sum of BTEX concentrations (Ref. NEPM 2013, Schedule B1)
F2	TRH $>C_{10} - C_{16}$ less the concentration of naphthalene (Ref. NEPM 2013, Schedule B1)
GIL	Groundwater Investigation Level
GME	Groundwater Monitoring Event
HIL	Health-based Investigation Level
HSL	Health-based Screening Level
km	Kilometres
LNAPL	Light, non-aqueous phase liquid (also referred to as PSH)
DNAPL	Dense, non-aqueous phase liquid
EIL	Ecological Investigation Level
ESL	Ecological Screening Level
m	Metres
m AHD	Metres Australian Height Datum
m BGL	Metres Below Ground Level
mg/L	Milligrams per litre
µg/L	Micrograms per litre
mV	Millivolts
NATA	National Association of Testing Authorities, Australia
NEPC	National Environmental Protection Council
NSW	New South Wales
OEH	Office of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)
PAHs	Polycyclic Aromatic Hydrocarbons
рН	Measure of the acidity or basicity of an aqueous solution
PSH	Phase-separated hydrocarbons (also referred to as LNAPL)


Page | 33


PQL	Practical Quantitation Limit (limit of detection for respective laboratory instruments)
QA/QC	Quality Assurance / Quality Control
RAP	Remediation Action Plan
SRA	Sample receipt advice (document confirming laboratory receipt of samples)
SWL	Standing Water Level
TRH	Total Recoverable Hydrocarbons (non-specific analysis of organic compounds)
US EPA	United States Environmental Protection Agency
UPSS	Underground Petroleum Storage System
UST	Underground Storage Tank
VOCs	Volatile Organic Compounds (specific organic compounds which are volatile)
VOCCs	Volatile Organic Chlorinated Compounds (a sub-set of the VOC analysis suite)

FIGURES

LEGEND

♥ Monitoring well

Monitoring well / Borehole location

Approx. site boundary

Approx. location of USTs

Approx. location of stockpile

Approx. location of asbestos fragments & super-six sheeting

	Bimioba Investments Trust Detailed Site Investigation	Figure:
5	37-39 Pavesi Street, Guildford West, NSW	Ζ
	Site Layout and Sampling Locations	Project: E22817 AA

КЕҮ	And the second division of the second divisio	Commis ID	
Soil (mg/kg) Sample ID GW (µgL) dd-mm-yy Date dd-mm-yy	A DECK AND A	Sample ID	BH105_0.0-0.1
Cadmium 0.7 Copper 1.3 1,100 Lead 4.4	Contraction of the second	Date	10-12-15
4 cPAH		Zn	480
TPH F1 40 TPH F2 60			
1,2,5-trimethylbenzene 12 1,1,2-trichloroethane 0.41		BH105	
1,2.4-trimethytbenzene 1.5 All soil concentrations are in mg/kg. The table above shows exceedance criteria for	Super-Six Sheeting		Sample ID BH104M
HIL-D land use.		BH104M 🔿 🗕	Date 15-12-15
= Exceedance of EIL/ESL Criteria cPAH = Carcinogenic PAHs (or Benzo(a)Pyrene Toxicity Equivalence Quotient)			Cd 1.9
All groundwater concentrations are in µg/L. The table above shows exceedance criteria	Stockpile of rubbish &	and the second second	Cu 10
for GILs for Marine Water environments. Volatile Organic Compounds (VOCs) = Exceedance of GIL for Fresh Waters	possible asbestos		Ni 160 Zn 2,600
A REAL PROPERTY AND A REAL PROPERTY.	BH102	🕂 ВН103	211 2,000
00			
	11 11 18		
		States and a state of the state	13 -16
LA constanting			INC. I CAR
Sample ID BH106M	A REAL PROPERTY AND A REAL	SP1-1	and the lite
Date 15-12-15	●вн10	24	and the second second
Cu 9		01 →SP1/2	
Ni 39		3712	
Zn 140		Con 200 1 100	
and the second s		11 - 1 2 d	
	₩ ВН106М	a spil	
Sample ID BH108_0.2-0.3	ВН	112 🕤	and the second second
			the film
Date 10-12-15			1 1 and a starter
Zn 220	→ BH107		
		1 1 1 1 1 1 1 1	1 3 3
		E Ballo	A Distant
		1 all month	
		ALCOURT	The second second
	ВН108 ВН113 (The second se
			Constant of Aller
A CONTRACTOR OF A CONTRACTOR O	Dames	CONTRACTOR OF THE OWNER	The second second
	⊕ВН109		the state /
		Sam	ple ID BH114_1.0-1.1
	A PROPERTY AND A PROPERTY AND A	and the second se	
	a statistical data and the second		Pate 10-12-15
	➡ BH110 BH114 ⊕		F3 510
		And the Party of t	And a state of the
	Interest second	A PARTY AND A PARTY	
	A STATE OF STATE		and the second
Sample ID B118-0.0-0.1 BH118_0.4-0.5	⊕вн111	C. C.	and the state of t
		1 1 1 1	
Date 10-12-2015	And States		
Zn - 200 Asbestos YES -	➡ BH119		Carrow Francis
	ВН115	All States	
		THE FLORE	Part 1
		CALL AND A	26 . 21 . 8
		and the	and the second
	BH118	110 2	E
	BH116	Sample ID BH117	M_0.0-0.1 BH117M
	SDESTOS		
tra	agments		-12-15 15-12-15
BH	117M 💙 -	Cu Ni	- <u>3</u> 50 16
ALL REAL PROPERTY AND A RE		Zn	- 180
	and the second second	Asbestos	YES
AND A THE REPORT OF A DESCRIPTION OF A DESCRIPANTO OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A D	CHARLES AND	A A A A A A A A A A A A A A A A A A A	A CONTRACT OF A CONTRACT

LEGEND

♥ Monitoring well

O Monitoring well / Borehole location

Approx. site boundary

Approx. location of USTs

Approx. location of stockpile

Approx. location of asbestos fragments & super-six sheeting

3

TABLES

Table T1 - Summary of Soil Analytical results

Table T1 - Summary of Soil Analytical r	esults																										
					Heavy	/ Metals					Ρ	AHs			В	ITEX			TF	RHs		OCPs (excluding		Ť			
Sample ID	ampling Date	As	Cd	Cr*	Cu	Pb	Hg	Ni	Zn	Carcinogenic PAHs (as B()P TEQ)	Benzo()pyrene	Total PAHs	Naphthalene	Benzene	Toluene	Ethylbenzene	Total Xylenes	F1 ²	F2 ³	F3 (>C ₁₆ -C ₃₄)	F4 (>C ₃₄ -C ₄₀)	Chlordane & trans-Nonachlor)	Chlordane	ans-Nonachlor	OPPs	Total PCBs	Asbestos
BH101_0.0-0.1		6	0.4	14	11	18	0.04	7.5	35	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	ND	ND	<0.1	ND	<1	No
BH101_0.4-0.5	_	6	0.4	12	16	15	<0.01	4.2	35	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NT	NT	NT	NT	NT	NT
BH102_0.0-0.1		7	0.5	18	16	20	0.02	7.5	45	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	ND	ND	<0.1	ND	<1	No
BH103_0.0-0.1	_	8	0.4	12	16	27	0.05	9.2	99	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	ND	ND	<0.1	ND	<1	No
BH104M_0.0-0.1	_	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	No
BH104M_0.4-0.5		7	0.3	12	11	16	0.01	8	28	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	ND	ND	<0.1	ND	<1	NT
BH105_0.0-0.1		7	0.5	9.8	22	150	0.02	8.7	480	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	ND	ND	<0.1	ND	<1	No
BH106M_0.2-0.3		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	No
BH106M_0.6-0.7		7	0.3	12	15	20	0.03	9.7	43	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	ND	ND	<0.1	ND	<1	NT
BH106M_0.9-1.0		5	<0.3	78	15	12	<0.01	25	23	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NT	NT	NT	NT	NT	NT
BH107_0.2-0.3	_	3	0.6	17	49	22	0.02	25	83	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	ND	ND	<0.1	ND	<1	No
BH108_0.2-0.3		6	1.4	26	61	52	0.02	28	220	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	ND	ND	<0.1	ND	<1	No
BH109_0.2-0.3		10	0.3	15	11	19	0.01	5	19	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	ND	ND	<0.1	ND	<1	No
BH109_0.7-0.8		9	0.4	14	13	17	0.02	2.3	16	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NT	NT	NT	NT	NT	NT
BH110_0.3-0.4		11	0.4	16	23	29	0.02	7.2	48	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	ND	ND	<0.1	ND	<1	No
BH111_0.2-0.3	10/1	7	0.4	12	13	22	<0.01	6	55	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	ND	ND	<0.1	ND	<1	No
BH111_1.1-1.2	12/2015	12	0.5	20	16	19	0.02	5	32	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	82	<90	<120	NT	NT	NT	NT	NT	NT
BH112_0.2-0.3	5	8	0.5	19	21	21	<0.01	20	52	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	ND	ND	<0.1	ND	<1	No
BH113_0.2-0.3		12	0.5	17	12	20	0.02	6.7	26	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	ND	ND	<0.1	ND	<1	No
BH114_0.2-0.3		5	0.5	27	27	16	0.01	30	54	<0.3	<0.1	<0.8	<0.1	<0.1 <0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	ND	ND NT	<0.1 NT	ND NT	<1 NT	No NT
BH114_1.0-1.1 BH114_1.6-1.7	_	NA	0.3 NA	9 NA	12 NA	12 NA	0.01 NA	1.2 NA	NA	<0.3 NA	<0.1 NA	4.4 NA	<0.1 NA	<u.1 NA</u.1 	<0.1 NA	<0.1 NA	<0.3 NA	<25 <25	510 98	270 <90	<120 <120	NT NA	NA	NA	NA	NA	NA
BH115_0.2-0.3	_	7	0.3	9.2	15	16	0.01	3.1	14	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	ND	ND	<0.1	ND	NA <1	No
BH115_0.5-0.6		7	0.4	12	9.3	15	<0.01	1.1	8.8	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NT	ND	NT	ND	NT	NT
BH116_0.2-0.3	_	5	0.6	53	31	18	<0.01	26	71	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	ND	ND	<0.1	ND	<1	No
BH117M_0.0-0.1	_	3	0.7	66	40	37	0.01	50	88	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	ND	ND	<0.1	ND	<1	Yes
BH117M_1.0-1.1		8	0.6	15	9.3	20	0.02	5.8	28	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NT	NT	NT	NT	NT	No
BH118_0.0-0.1		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	Yes
BH118_0.4-0.5	_	11	0.6	15	22	72	0.03	11	200	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	ND	ND	<0.1	ND	<1	NT
BH118_1.0-1.1		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No
BH119_0.0-0.1		6	0.6	20	28	57	0.02	25	110	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	ND	0.4	0.1	ND	<1	No
SP1-1		10	0.8	19	21	29	0.02	18	100	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	84	290	<120	ND	ND	<0.1	ND	<1	No
SP1-2		6	0.5	17	30	27	0.01	30	95	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	ND	ND	<0.1	ND	<1	No
										-		SILs		-				-				-	-	-	-		-
HIL A - Residential with garden / acessible	e soils	100	20	100	6,000	300	40	400	7,400	3	1	300										NR	90	NR	NR	1	
HSL A & HSL B - Residential				Cr(VI)		Sourco	depths (0 m to <					1	2	0.5	160	55	40	45	110	1		I	1				
Soil texture classification –Sand ¹							depths (0 m to < depths (1 m to <2						NI	0.5	220	55 NL	40 60	45 70	240								
EILs / ESLs - urban residential and public	opop spaco ¹⁴	100	NR	205	90	1,260	NR	35	190	NR	0.7	NR	170	50	85	70	105	180*	120*	300	2800	180	1	1	NR	NR	NR
Management Limits – Residential, parklan		100	- HK	203	70	1,200		33	170	nix	0.7	nix	170	30	00	70	103	700	1000	2500	10000	100	<u> </u>		Int		
Coarse grained soil texture ¹ Asbestos contamination HSL – Residentia	IB																										0.04
Bonded ACM (%w/w)																											
Asbestos contamination HSL for																											0.001
Notes:	All results are recorded				centration exceeds		Based Soil Criteria	a																			
					centration exceeds			L		P	14. C P																
HIL B	NEPC 1999 Amendmen		ıtn Based Investiç	gation Levels ap	plicable for resider	ntial exposure set	tungs with minima	a opportunities fo	r soil access, incl	uding dwellings w	with tuily and perm	nanentíy paved ya	ro space such as	nigh rise building	is and apartment	S.											
#	Thresholds are for Chro																										
NR	No current published cri		ovcoode #r "	concontroline	which the same	ntor phone	t discoluo en en	ro of the india'	al chomical																		
NL	Not Limiting' If the derive								ai chennical																		

'Not detected' i.e. all concentrations of the compounds within the analyte group were found to be below the laboratory limits of detection.

ND NT 1

Not Tester i.e. the sample as not analysed. Coarse Grained soil values were applied, being the most conservative of the material types.

Table T2 – Summary of Groundwater Investigation Results

				Heavy M	letals						BTEX				TR				
Sample ID	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury ⁵	Nickel	Zinc	Benzene	Toluene	Ethylbenzene	o-xylene	m/p-xylene	F1*	F2**	F3 (>C ₁₆ -C ₃₄)	F4 (>C ₃₄ -C ₄₀)	Total PAHs	Total VOCs
BH104M	<1	1.9	<1	10	<1	<0.1	160	2600	<0.5	<0.5	<0.5	<0.5	<1	<50	<60	<500	<500	<1	N.D.
BH106M	4	0.1	<1	9	<1	<0.1	39	140	<0.5	<0.5	<0.5	<0.5	<1	<50	<60	<500	<500	<1	N.D.
BH117M	3	0.2	<1	3	<1	<0.1	16	180	<0.5	<0.5	<0.5	<0.5	<1	<50	<60	<500	<500	<1	N.D.
GIL	24 as AS(III) 13 as AS(V)	0.2	N.R. (Cr III) 1 ¹ (Cr VI)	1.4	3.4	0.06 ³	11	8 ¹	800 ²	NR ²	NR^2	350	200	50 ⁴	60 ⁴	500 ⁴	500 ⁴	N.R.	N.R.

Notes: All results are in units of µg/L.

GIL Groundwater Investigation Level. All GIL values sourced from National Environment Protection (Assessment of Site Contamination) Measure 1999 – Amendment 2013, Schedule (B1) - Guideline on Investigation Levels for Soil and Groundwater, (NEPC) Investigation levels apply to Fresh Waters for typical slightly-moderately disturbed systems.

N.R. No current publish criterion.

N.D. Not Detected.

N.A. Not analysed.

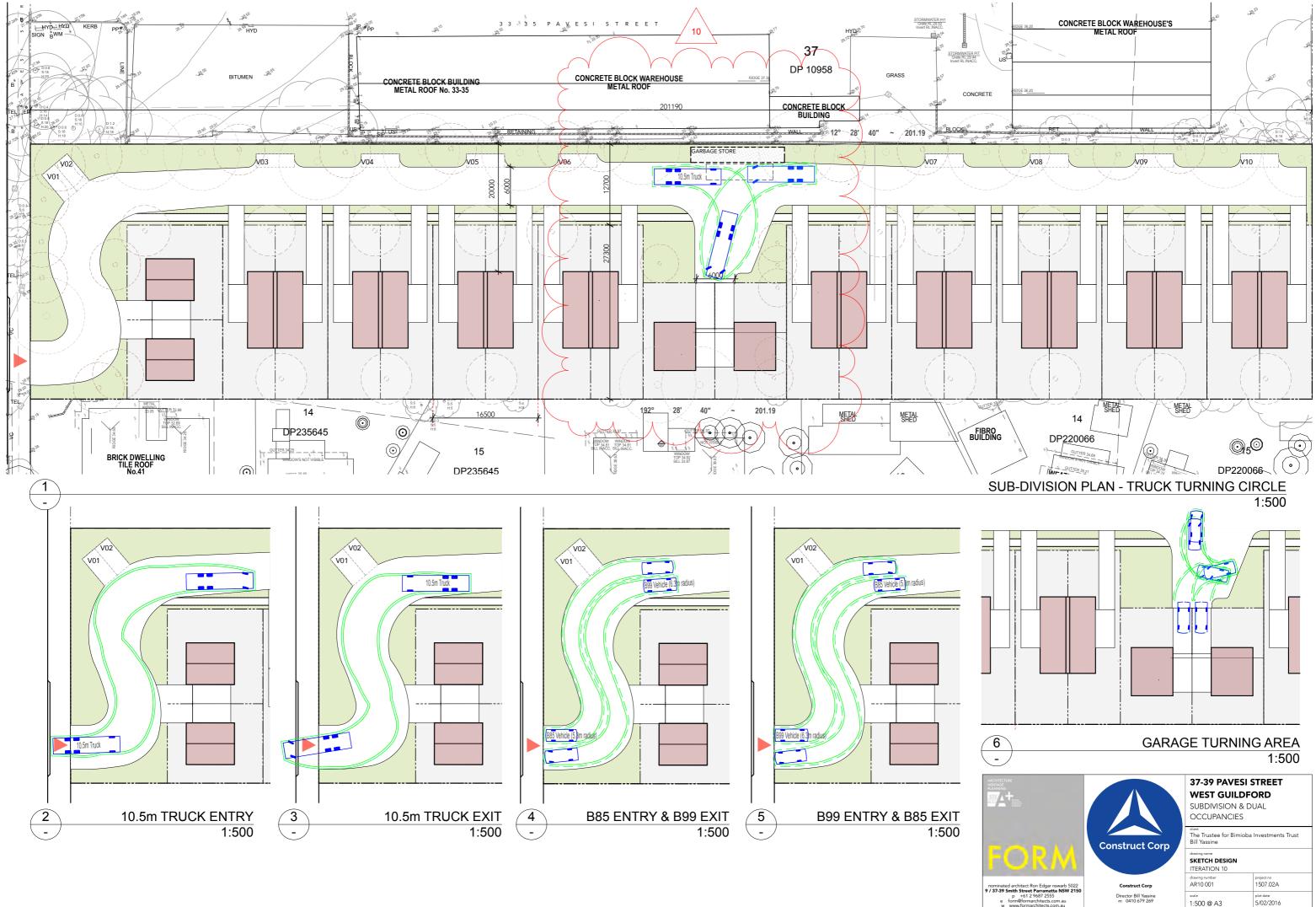
* To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.

** To obtain F2 subtract Naphthalene from the >C10-C16 fraction.

1 Indicated threshold value may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance.

2 NEPM (2013) Table 1A(4) Groundwater HSL A & HSL B for vapour intrusion at the contaminant source depth ranges in sands 2m to <4m, considered most representative of fractured bedrock aquifer.

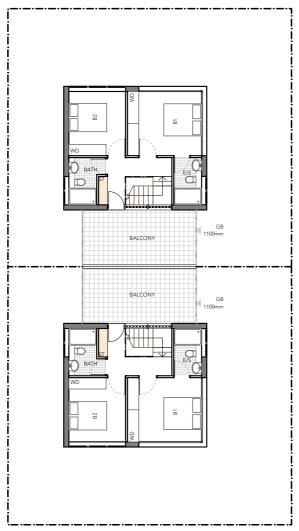
3 Chemical for which possible bioaccumulation and secondary poisoning effects should be considered, refer to ANZECC & ARMCANZ (2000) for further guidance.

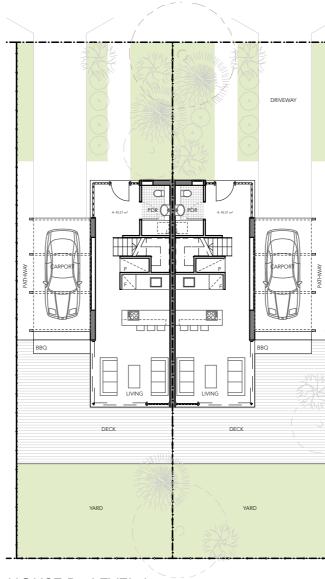

4 Where GIL is less the than the laboratory reporting limit (LOR), the LOR is adoted as the GIL, as per DEC (2007).

5 Note: Laboratory reporting limit for Mecury dissolved in water is 0.1 µg/L.

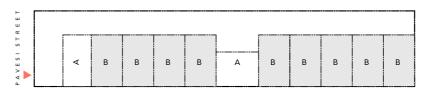
indicates concentration value exceeding the adopted GIL.

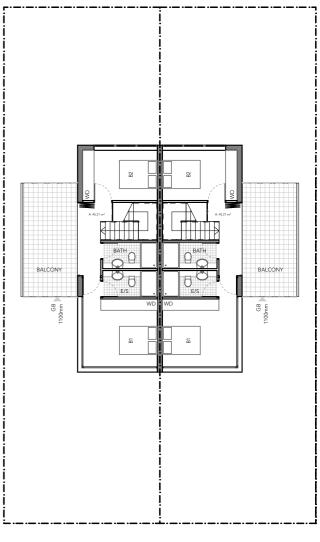
APPENDIX A PROPOSED DEVELOPMENT PLANS

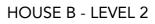


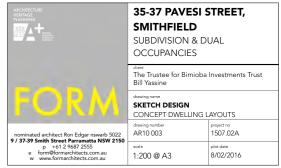


HOUSE A - LEVEL 1




HOUSE A - LEVEL 2




HOUSE B - LEVEL 1

KEYPLAN (NTS)

> APPENDIX B Site Photographs

Photo 1: Current site buildings including a former residential dwelling and a large warehouse (photo facing north).

Photo 2: Grassed / gravelled area of the northern portion of the site (in foreground) with large warehouse in background (photo facing south).

Photo 3: Super-six asbestos sheeting located within the grassed / gravelled area in the northern portion of the site.

Photo 4: Stockpile of various materials, including possible super-six asbestos sheeting fragments.

Photo 5: Stockpile of unknown origin located within the north eastern portion of the site.

Photo 6: Underground petroleum storage systems and vent pipes located within the north western area of the site (refer to Figure 2).

Photo 7: Crushed asbestos- sheeting fragments located within the gravelled car-park in the southern portion of the site.

> APPENDIX C Borehole Logs

Environmental Investigations Austr Contamination Remediation Geote	ralia Project D Location 3 Position R Job No. E	87-39 Refer 52281	Paves to Fig 17	si Str jure 2	estigation eet, Guildford West NSW ? Contractor HartGEO Pty L ent Trust Drill Rig Ute-mounted rig Inclination -90°	td	BC	Sheet 1 OF 1 Date Started 10/12/15 Date Completed 10/12/15 Logged BA Date: 10/12/15 Logged BA Date: 10/12/15 Date: 10/12/15
Drilling	Sampling				Field Material Desc	riptic	on	
ME THOU PERETRATION WATER WATER Miden DEPTH (metres)	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL			CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
	BH101_0.0-0.1 ES 0.00-0.10 m PID = 2.1 ppm BH101_0.4-0.5 ES 0.40-0.50 m 0.40 m PID = 2.9 ppm BH101_0.9-1.0 ES			- CI- CH	FILL: Clayey SAND; fine grained, brown/orange, with some minor gravel, no odour. Silty CLAY; medium to high plasticity, orange/grey, with some ironstone mottles, no odour. SHALE; grey, inferred extremely weathered, no odour.	D		FILL RESIDUAL SOIL WEATHERED ROCK
	Digo. ToO m 0.90 0 m PID = 2.6 ppm				Hole Terminated at 1.00 m Target Depth Reached.			

	\square	ion	Remediatio	DNS Austr on Geotec	alla Project ^{hnical} Location Position Job No. Client	37-39 Refe E228 Bimic	9 Pave to Fig 17	si Str jure 2	Contractor HartGEO Pty L ent Trust Drill Rig Ute-mounted ri Inclination -90°	td g	BC	Sheet1 OF 1Date Started10/12/15Date Completed10/12/15LoggedBADate: 10/1Checked JSDate: 14/1
	7	Dril	ling		Sampling			F	Field Material Desc			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0 —	0.30	BH102_0.0-0.1 ES 0.00-0.10 m 0.00 m	6	\bigotimes	-	FILL: Clayey SAND; fine grained, brown/orange, with some minor gravel, no odour.	D		FILL
AD/T	-	GWNE	-	0.00	0.00 m PID = 2 ppm			CI- CH	Silty CLAY; medium to high plasticity, orange/grey, with some ironstone mottles, no odour.		-	RESIDUAL SOIL
∢		0	-	0.80	BH102_0.6-0.7 ES 0.60-0.70 m	;	x	-		D		WEATHERED ROCK
			1	1.00	0.60 m PID = 1 ppm BH102_0.9-1.0 ES	5		-	SHALE; grey, inferred extremely weathered, no odour.	\vdash		
			-		0.90-1.00 m 0.90 m PID = 1.9 ppm				Target Depth Reached.			
			-									
			2—									
			-									
			-									
			3—									
			-									
			-									
			4									
			-									
			-									
			-									
			5									
			-									
			-									
			6—									
			-									
			-									
			7—									
			-									
			-									
			8									
			-									
			-									
			9									
			-									
			-									
			- 10 —									

Environmental Investigations	
Australia	F
Contamination Remediation Geotechnical	T

BOREHOLE: BH103

ralia	Project
chnical	Location
	Position

Job No.

Client

Detailed Site Investigation 37-39 Pavesi Street, Guildford West NSW Refer to Figure 2 E22817 Bimioba Investment Trust

Contractor HartGEO Pty Ltd Drill Rig Ute-mounted rig Inclination -90°

Sheet	1 OF 1
Date Started	10/12/15
Date Completed	10/12/15
Logged BA	Date: 10/12/15
Checked JS	Date: 14/12/15

F	Drilling Sampling Field Material Description													
┟		7		iniy		Sampling			F					
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
ļ				0		BH103_0.0-0.1 ES		\bigotimes	-	FILL: Clayey SAND; fine grained, brown/orange, with some minor gravel, no odour.	D		FILL	
	∟∣		Щ	_	0.30	BH103_0.0-0.1 ES 0.00-0.10 m 0.00 m PID = 1.4 ppm		XX X	CI-		+		RESIDUAL SOIL	+
	AD/T	-	GWNE	-		BH103_0.5-0.6 ES		— ×	СН	Silty CLAY; medium to high plasticity, orange/grey, with some ironstone mottles, no odour.	D	-		-
				-	0.80	BH103_0.5-0.6 ES 0.50-0.60 m 0.50 m PID = 1.3 ppm		× _ `	-	SHALE; grey, inferred extremely weathered, no odour.			WEATHERED ROCK	\vdash
ŀ	_			1	1.00	110 – 1.5 ppm	+			Hole Terminated at 1.00 m	\vdash			F
				-						Target Depth Reached.				
				-										-
				-										-
				2 —										-
				-										
				-										-
				-										-
				3-										
				-										
				-										-
5				-										-
014-07-(4										
A 1.03 2				-										-
6 Prj: El				-										-
014-07-0				5										
and In Situ Tool - DGD Lib: EIA 1.03 2014.07-05 Pŋ: EIA 1.03 2014-07-05				-										-
Lib: El				-										-
- DGD				-										-
Situ Too				6										
b and In				-										-
Datgel Lab				-										-
8.30.004 D				_										
				7—										-
14/12/2015 17:14				-										-
				-										
< <drawingfile>></drawingfile>				-										_
				8—										-
GS.GPJ				-										-
OLE LO				-										
E22817 BOREHOLE LOGS.GPJ				-										-
E22817				9 —										-
10LE 3				-										
BOREF				-										
g IS AU				-										
EIA LIB 1.03.GLB Log IS AU BOREHOLE 3				10 —						<u> </u>	L	L		-
JB 1.03.						i nis borehole	e log	j snoul	u De	read in conjunction with Environmental Investigations Austra	na's a	accor	npanying standard notes.	
EIA														

ľ	nvi n v	ron est	me tia	<mark>ntal</mark> atio	ons 🛚	0_					B	OR	EHOLE: BH104M
		1			Austr on Geotec	alia Project	37-39 Refe E228	9 Pave r to Fig 817	si Str gure 2	Contractor HartGEO Pty L ent Trust Drill Rig Ute-mounted ri			Sheet1 OF 1Date Started10/12/15Date Completed10/12/15LoggedBADate: 10/12/15
F										Inclination -90°			Checked JS Date: 14/12/15
_	_	_	Drilli	ng		Sampling				Field Material Desc	riptio	on I>	PIEZOMETER DETAILS
METHOD	PENETRATION	RESISTANCE	WALEK	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	ID Static Water Level
F				0 —		BH104_0.0-0.1 ES 0.00-0.10 m		$\times\!\!\!\times$]	ASPHALT: 10mm thick.	<u>^-</u>	1	Gatic Cover
				-	0.90	0.00 m PID = 1.9 ppm BH104_0.4-0.5 ES 0.40-0.50 m 0.40 0 PID = 1.8 ppm BH104_0.8-0.9 ES 0.80-0.90 m		\bigotimes		FILL: CLAY; fine grained, brown/orange, with some minor gravel and ash layers, no odour.	D		
				1— - -	1.10	BH104_0.8-0.9 ES 0.80-0.90 m 0.80 m PID = 1.4 ppm BH104_1.2-1.3 ES 1.20-1.30 m 1.20 m PID = 1.9 ppm			CI- CH	Silty CLAY; medium to high plasticity, orange/grey, with some ironstone mottles, no odour. SHALE; grey, inferred extremely weathered, no odour.	D		CONT POOL CONT POOL CONT POOL Casing
				- 2	2.50	ни – т.э ррп							Cuttings Cuttin
AD/T	-			- 3						From 2.5m, brown/grey.		-	
4-07-05 Pŋ: EIA 1.03 2014-07-05				4							SM		Sand So mm uPVC Screen
EA LIB 103 GLB Log IS AU BOREHOLE 3 E2817 BOREHOLE LOGS/GFJ <cdawingfile>> 14/12/2015 17:14 8,30.004 Dage Lab and In Shu Tool - DGD LID: EIA 1.03 2014/7-05 Prj: EIA 1.03 2014/7-05</cdawingfile>			>	5 — - - - - 6 —	6.00					Hole Terminated at 6.00 m	w		
7:14 8.30.004 Datgel Lab and Ir				- - - 7						Borehole converted into monitoring well.			
<drawingfile>> 14/12/2015 1</drawingfile>				- - - 8									
BOREHOLE LOGS.GPJ <				-									
g IS AU BOREHOLE 3 E22817				9									
EIA LIB 1.03.GLB Lo				10—		This boreh	iole log	ı g shoul	l be	read in conjunction with Environmental Investigations Austra	lia's a	accor	mpanying standard notes.

Ē	nvir 1 v e	onm sti	ental gatio	ons							BC	REHOLE: BH105
C	ntamina	ation	Remediatio	Austr on Geote		37-39 Refe E228	9 Pave r to Fig 317	si Str gure 2	estigation eet, Guildford West NSW Contractor HartGEO Pty L ent Trust Drill Rig Ute-mounted ri Inclination -90°			Sheet1 OF 1Date Started10/12/15Date Completed10/12/15Logged BADate: 10/12/15Checked JSDate: 14/12/15
_		Dri	lling		Sampling				Field Material Desc	riptio	on	
METHOD	PENETRATION RESISTANCE		DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION		CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
		GWNE		0.70	BH105_0.0-0.1 ES 0.00-0.10 m PID = 1.8 ppm BH105_0.6-0.7 ES 0.60-0.70 m 0.60 m PID = 1.3 ppm BH105_0.8-0.9 ES 0.80 m PID = 1.3 ppm BH105_1.4-1.5 ES 1.40-1.50 m 1.40 m PID = 0.9 ppm				FILL: Clayey SAND; fine grained, brown/orange, with some minor gravel, slight sulfur odour. Sity CLAY; medium to high plasticity, orange/grey, with some ironstone motiles, no odour. Hole Terminated at 1.50 m Target Depth Reached.	SM SM		FILL - RESIDUAL SOIL - WEATHERED ROCK - Image: Image of the second se
IA LIB 1												

	\square	tion	ental gatic	Aust	ralia Project Location Position Job No. Client	37-39 Refe E228 Bimid	9 Pave r to Fig 317	si Str jure 2	estigation eet, Guildford West NSW Contractor HartGEO Pty L ent Trust Drill Rig Ute-mounted ri Inclination -90°	td g		Sheet Date Star Date Con Logged Checked	npleted 10/12/15 BA Date: 10/12
	z	Dril	ling		Sampling			Ы	Field Material Desc	· ·	1.	PIEZOME	TER DETAILS ଅ
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	ID Static Water Lev BH106M 90 11 12 12 12 12 12 12 12 12 12 12 12 12	_
DT AD/T DT		GWNE		0.20 0.70 1.20 2.50 4.10	BH106_0.2-0.3 ES 0.20-0.30 m 0.20 m PID = 1.5 ppm BH106_0.6-0.7 ES 0.60-0.70 m PID = 2.5 ppm BH106_1.7-1.8 ES 1.70-1.80 m PID = 1.8 ppm BH106_1.7-1.8 ES 1.70 m PID = 2.2 ppm BH106_2.0-2.1 ES 2.00-2.10 m 2.00 m PID = 1.7 ppm BH106_3.0-3.1 ES 3.00-3.10 m 3.00 m PID = 2.6 ppm BH106_4.0-4.1 ES 4.00-4.10 m 4.00 m PID = 2.5 ppm			- CCH -	CONCRETE: 200mm thick. FILL: Clayey SAND; fine grained, brown/orange, with some minor gravel, slight hydrocarbon odour. Sitly CLAY; medium to high plasticity, orange/grey, with some ironstone mottles, no odour. SHALE; grey/brown, inferred extremely weathered, with clay bandings, slight hydrocarbon odour. From 2.5m, dark grey/brown. From 4.1m, no odour. Hole Terminated at 6.00 m Borehole converted into monitoring well.	D			Cuttings Cuttings 50 mm uPVC Casing Bentonite Sand 50 mm uPVC Screen
			10 —	[This bore	hole log	 g shoul	d be	read in conjunction with Environmental Investigations Austra	lia's a	accor	 mpanying standard	notes.

E	nvir 1 v e	onm sti	<mark>ental</mark> gatio	ons							BC	REHOLE: BH107
Ca	ntamina	ition	Remediatio	Austr on Geote		37-39 Refe E228	9 Pave r to Fiç 317	esi Str gure 2	stigation et, Guildford West NSW Contractor HartGEO Pty nt Trust Drill Rig Ute-mounted Inclination -90°			Sheet1 OF 1Date Started10/12/15Date Completed10/12/15Logged BADate: 10/12/15Checked JSDate: 14/12/15
F		Dri	lling		Sampling				Field Material Des	crinti	on	
METHOD	PENETRATION RESISTANCE		DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION			STRUCTURE AND ADDITIONAL OBSERVATIONS
		GWNE		0.70 1.70	BH107_0.2-0.3 ES 0.20-0.30 m 0.20 m PID = 2.5 ppm BH107_0.8-0.9 ES 0.80 m 0.80 m PID = 2.1 ppm BH107_1.6-1.7 ES 1.60-1.70 m 1.60 m PID = 2.3 ppm				FILL: Clayey SAND; fine grained, brown/orange, with some minor gravel, no odour. SHALE; grey, inferred extremely weathered, no odour. Hole Terminated at 1.70 m Target Depth Reached.			FILL . WEATHERED ROCK . .
			- - - 10		This bore	nole log	g shou	ld be	ead in conjunction with Environmental Investigations Austr	ralia's	accor	mpanying standard notes.

Er	viro	nm sti	ental gatio	ons		-				I	BC	REHOLE: BH108	8
Cor	taminat	tion	Remediatio	Austr on Geoteo	alia chnical Location Position Job No. Client	37-39 Refe E228	9 Pave r to Fig 317	si Str gure 2	Contractor HartGEO Pty L ent Trust Drill Rig Ute-mounted r			Sheet1 OF 1Date Started10/12/15Date Completed10/12/15LoggedBADate: 10/	
									Inclination -90°			Checked JS Date: 14/	12/15
		Dril	ling		Sampling				Field Material Desc	riptio	on ⊳		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
DT			0	0.20				-	CONCRETE: 200mm thick.	-		CONCRETE HARDSTAND	
			-		BH108_0.2-0.3 ES 0.20-0.30 m 0.20 m PID = 2.5 ppm		\bigotimes	- -	FILL: Clayey SAND; fine grained, brown/orange, with some minor gravel, no odour.	D		FILL	
AD/T	-	GWNE	- 1—	0.70	BH108_0.8-0.9 ES 0.80-0.90 m			CI- CH	Silty CLAY; medium to high plasticity, orange/grey, with some ironstone mottles, no odour.		-	RESIDUAL SOIL	
A		Ŭ	-	1.40	0.80 m PID = 2.3 ppm		×			D			
			-	1.80	BH108_1.5-1.6 ES 1.50-1.60 m 1.50 m			-	SHALE; grey, inferred extremely weathered, no odour.			WEATHERED ROCK	
			2—		PID = 2.2 ppm	_			Hole Terminated at 1.80 m Target Depth Reached.				-
			-										
			-										
			3										-
			-										
-05			-										
03 2014-07			-										
5 Prj: EIA 1.			-										
3 2014-07-0			- 5 —										-
LIb: EIA 1.0			-										
ol - DGD			-										
d In Situ To			6—										-
ttgel Lab an			-										
3.30.004 D£			-										
15 17:15 8			7—										-
~ 14/12/20			-										
brawingFile>			-										
S.GPJ < <d< td=""><td></td><td></td><td>8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></d<>			8										-
HOLE LOG			-										
2817 BORE			- 9—										.
IOLE 3 E22			-										.
AU BOREH			-										
.B Log IS,			- 10 —										
EA LIB 1.03 GLB Log IS AU BOREHOLE 3 E22817 BOREHOLE LOGS.GPJ <-CD-awingFile> 14/12/2015 17:15 8.30.004 Dargel Lab and In Situ Tool - DGD Ub; EIA 1.03 2014/7/05 Pg; EIA 1.03 2014/7/05					This boreh	nole lo	g shoul	ld be	read in conjunction with Environmental Investigations Austra	alia's :	accor	npanying standard notes.	

Ei Ir	nviro 1 v e	onm sti	ental gatio	ons	0_					I	BC	REHOLE: BH109
Co	ntamina	tion	Remediatio	Austr on Geoteo		37-3 Refe E228	9 Pave r to Fig 317	si Str gure 2	estigation eet, Guildford West NSW 2 Contractor HartGEO Pty L ent Trust Drill Rig Ute-mounted rig Inclination -90°			Sheet1 OF 1Date Started10/12/15Date Completed10/12/15Logged BADate: 10/12/1Checked JSDate: 14/12/7
		Dril	ling		Sampling				Field Material Desc	rintic		
METHOD	PENETRATION RESISTANCE		DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL			CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
DT			0 —	0.20			\boxtimes	-	CONCRETE: 200mm thick.	-		CONCRETE HARDSTAND
AD/T	-	GWNE	- - -	0.50 0.90	BH109_0.2-0.3 ES 0.20-0.30 m 0.20 m PID = 1.7 ppm BH109_0.7-0.8 ES 0.70-0.80 m			CI- CH	FILL: Clayey SAND; fine grained, brown/orange, with some minor gravel, no odour. Silty CLAY; medium to high plasticity, orange/grey, with some ironstone mottles, no odour.	D	-	FILL RESIDUAL SOIL WEATHERED ROCK
A		0	1— -		0.70 m PID = 2.4 ppm BH109_1.4-1.5 ES 1.40-1.50 m				SHALE; grey, inferred extremely weathered, no odour.	D		
EA LIB 103 GLB Log IS AU BOREHOLE 3 E22817 BOREHOLE LOGS GPJ < <drawingfile> 14/12/2015 17:15 8.30.004 Daget Lab and in Situ Tool - DGD Lb: EA 1.03 2014/07-05 Pdj: EA 1.03 2014/07-05</drawingfile>			2 — - - - - - - - - - - - - - - - - - - -	1.70	- 1.40 m PID = 1.5 ppm				Hole Terminated at 1.70 m Target Depth Reached.			
IA LIB 1.03.GI					This boreh	nole lo	g shou	ld be	read in conjunction with Environmental Investigations Austra	llia's a	accor	npanying standard notes.

E I r	nviro 1 v e	sti	ental gatio	ons		Det	ile i O''		astisation	I	BC	REHOLE: BH110
Cor	ntamina	tion	Remediatio	Austr on Geote		37-39 Refe E228	9 Pave r to Fig 317	si Str gure 2	estigation reet, Guildford West NSW 2 Contractor HartGEO Pty L nent Trust Drill Rig Ute-mounted ri Inclination -90°			Sheet1 OF 1Date Started10/12/15Date Completed10/12/15LoggedBADate: 10/12Checked JSDate: 14/12
		Dril	ling		Sampling				Field Material Desc	riptio	on	
METHOD	PENETRATION RESISTANCE		DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL			CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
DT			0-	0.20			\boxtimes	-	CONCRETE: 200mm thick.	-		CONCRETE HARDSTAND
AD/T	-	GWNE	- - - 1	0.70	BH110_0.2-0.3 ES 0.20-0.30 m PID = 2.8 ppm BH110_0.3-0.4 ES 0.30-0.40 m 0.30 m PID = 2.1 ppm BH110_0.6-0.7 ES 0.60-0.70 m 0.60 m			- CI- CH	FILL: Clayey SAND; fine grained, brown/orange, with some minor gravel, no odour. Silty CLAY; medium to high plasticity, orange/grey, with some ironstone mottles, no odour.	D	-	FILL RESIDUAL SOIL
				2.00	PID = 2.1 ppm BH110_0.9-1.0 ES 0.90-1.00 m 0.90 m PID = 2.4 ppm BH110_1.9-2.0 ES			-	SHALE; grey, inferred extremely weathered, no odour.			WEATHERED ROCK
			3		1.90-2.00 m 1.90 m PID = 2.3 ppm				Hole Terminated at 2.00 m Target Depth Reached.			
					This boreh	nole log	g shoul	ld be	read in conjunction with Environmental Investigations Austra	llia's	accor	npanying standard notes.

E Ir	nviro 1 v e	sti	ental gatio	DINS Austr		Deta	iled Sit	te Inv	estigation		BC	REHOLE: BH111
Co	ntamina	tion	Remediatio	on Geoteo		Refe E228	r to Fig 317	gure 2	Contractor HartGEO Pty L ent Trust Drill Rig Ute-mounted r			Sheet1 OF 1Date Started10/12/15Date Completed10/12/15LoggedBADate: 10/12/15
							1		Inclination -90°			Checked JS Date: 14/12/1
METHOD	PENETRATION RESISTANCE		DEPTH (metres)		SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	Field Material Desc			STRUCTURE AND ADDITIONAL OBSERVATIONS
	ЩЩ Ш Ш Ш Ш Ш	WA		DEPTH RL		Ш Ш Ш	GRAI	NSU				CONCRETE HARDSTAND
- DT	_	GWNE	- - - 1—	0.20	BH111_0.2-0.3 ES 0.20-0.30 m 0.20 m PID = 3 ppm			- - - -	CONCRETE: 200mm thick. FILL: SAND; fine grained, brown/orange, with some minor gravel and glass fragments, strong hydrocarbon odour.	- D		FILL
AD/T		GM	-	1.30 1.70 1.80	BH111_1.1-1.2 ES 1.10-1.20 m 1.10 m PID = 24.8 ppm			- CI- CH	FILL: Clayey SAND; fine grained, brown/orange, with some minor gravel, strong hydrocarbon odour. Silty CLAY; medium to high plasticity, orange/grey, with some ironstone mottles, strong hydrocarbon odour. SHALE; grey, inferred extremely weathered, strong hydrocarbo	, D		RESIDUAL SOIL WEATHERED ROCK
			2 - -	2.00	BH111_1.9-2.0 ES 1.90-2.00 m 1.90 m PID = 3.5 ppm				Vodour. From 1.8m, no odour. Hole Terminated at 2.00 m Target Depth Reached.			
			- 3— -	-								-
1.03 2014-07-05			- 4	-								-
v 1.03 2014-07-05 Pŋ: ElA 1.03 2014-07-05			- - 5 —	-								-
n Situ Tool - DGD Lib: El			- - 6—	-								-
3.30.004 Datgel Lab and I			-	-								
-116>> 14/12/2015 17:15			7 — - -	-								
EA LIB1.03.018 Log IS AU BOREHOLE 3 E22817 BOREHOLE LOGS.GFJ <-D7awingFile> 14/12/2015 17:15 8.30.004 Daggel Lab and in Situ Tool - DGD LID: EA 1.			- 8 -	- - -								-
OLE 3 EZ2817 BOREMUL			- - 9 —	- - -								
-B Log IS AU BUREHI			- - - 10 —	-								
EIA LIB 1.03.G					This boreh	nole log	g shoul	ld be	read in conjunction with Environmental Investigations Austra	alia's	accor	mpanying standard notes.

I

Cor	taminat	tion	Remediatio	Austr n Geotec	alia Project Location Position Job No. Client	37-39 Refe E228	9 Pave r to Fig 817	si Str jure 2	estigation eet, Guildford West NSW ? Contractor HartGEO Pty L ent Trust Drill Rig Ute-mounted ri Inclination -90°			Date Started 10 Date Completed 10 Logged BA D	OF 1 /12/15 /12/15 ate: 10/12/15 ate: 14/12/15
		Dri	ling		Sampling				Field Material Desc				
METHOD	PENETRATION RESISTANCE	WATER		DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AN ADDITIONAL OBSERVATIONS	
DT			0	0.20			\boxtimes	-	CONCRETE: 200mm thick.	-		CONCRETE HARDSTAND	
			-	0.50	BH112_0.2-0.3 ES 0.20-0.30 m		\bigotimes	-	FILL: Clayey SAND; fine grained, brown/orange, with some minor gravel, no odour.	D		FILL	-
		ш	-	0.50	0.20 m PID = 1.4 ppm		\mathbf{P}	CI-	Silty CLAY; medium to high plasticity, orange/grey, with some			RESIDUAL SOIL	-
AD/T	-	GWNE	-		BH112 0.8-0.9 ES		×	СН	ironstone mottles.		-		
A			1 —	1.00	BH112_0.8-0.9 ES 0.80-0.90 m 0.80 m		Ê	-	SHALE; grey,inferredextremely weathered, no odour.	D		WEATHERED ROCK	
			-		PID = 2.5 ppm								-
				1.50		_			Hole Terminated at 1.50 m				
			_						Target Depth Reached.				-
			2—										-
			-										-
			-										-
			-										-
			3-										_
			-										-
			-										-
			-										-
			-										-
			4 —										-
													-
			-										-
			-										-
			5 —										-
			-										-
			-										-
			6—										_
			-										-
			-										-
			-										-
			7—										-
													-
			-										-
			-										-
			-										-
			8 —										-
			-										-
			_										
			_										-
			9 —										-
			-										-
			-										-
			-										-
			10 —										
			10		This boreh	ole log	g shoul	d be	read in conjunction with Environmental Investigations Austra	lia's a	accor	npanying standard notes.	

	taminat	tion	Remediatio	Austr n Geotec		37-39 Refe E228	9 Pave r to Fig 817	si Str jure 2	estigation eet, Guildford West NSW Contractor HartGEO Pty L ent Trust Drill Rig Ute-mounted ri Inclination -90°			Sheet1 OFDate Started10/12/12Date Completed10/12/12LoggedBADate: 1Checked JSDate: 1	5 5 0/12/15
		Dril	ling		Sampling				Field Material Desc	riptic	n		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	· ·	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
Ы			0	0.20			\boxtimes	-	CONCRETE: 200mm thick.	-		CONCRETE HARDSTAND	
			-		BH113_0.2-0.3 ES 0.20-0.30 m			CI- CH	Silty CLAY; medium to high plasticity, orange/grey, with some ironstone mottles.			RESIDUAL SOIL	
		ш	-	0.50	0.20 m PID = 2.4 ppm			-	SHALE; grey, inferred extremely weathered, with gravel,	-		WEATHERED ROCK	-
AD/T	-	GWNE	-	0.90	BH113_0.7-0.8 ES 0.70-0.80 m				no odour.	D	-		-
A		Ŭ	1 —		0.70 m PID = 2.8 ppm			-	SHALE; grey/brown, inferred extremely weathered, with clay bandings, no odour.				-
			-										-
_				1.50					Hole Terminated at 1.50 m				
			-						Target Depth Reached.				-
			2—										-
			-										-
			_										-
			-										.
			3—										-
			-										-
			-										-
			_										
			4 —										-
			-										
			-										-
			-										-
			5										_
			-										
			-										-
			-										-
			6-										_
			-										-
			-										-
			-										-
			- 7-										-
			-										
			-										-
			-										-
			-										-
			8										
			-										.
			-										-
			-										-
			9 —										-
			_										
			-										.
			-										-
			10 —	<u> </u>	This boreh	nole lo	g shoul	d be	read in conjunction with Environmental Investigations Austra	lia's a	accor	npanying standard notes.	I

E	nviro 1 v e s	nm sti	ental gatio	ons 🕻		-				I	BC	REHOLE: BH114
Co	ntamina	tion	Remediatio	Austr on Geoteo	^{chnical} Location Position	37-39 Refe	9 Pave r to Fig	si Str				Sheet 1 OF 1 Date Started 10/12/15
					Job No. Client	E228 Bimic		/estm	Contractor HartGEO Pty L ent Trust Drill Rig Ute-mounted ri Inclination -90°			Date Completed 10/12/15 Logged BA Date: 10/12/1 Checked JS Date: 14/12/ ⁷
		Dril	ling		Sampling				Field Material Desc	rintic		
-	z		iiig		Sampling			5				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
DT			0 —	0.20			\boxtimes	- 1	CONCRETE: 200mm thick.	-		CONCRETE HARDSTAND
			-	0.60	BH114_0.2-0.3 ES 0.20-0.30 m 0.20 m PID = 0.2 ppm			- >	FILL: Clayey SAND; fine grained, brown/orange, with some minor gravel, no odour.	D		FILL
AD/T	-	GWNE	- 1—	1.00	PID = 0.2 ppm BH114_0.5-0.6 ES 0.50-0.60 m 0.50 m		x 	CI- CH	Silty CLAY; medium to high plasticity, orange/grey, with some ironstone mottles.		-	RESIDUAL SOIL
A		Ŭ	-	1.50	PID = 3.4 ppm BH114_1.0-1.1 ES 1.00-1.10 m 1.00 m			-	SHALE; grey, inferred extremely weathered strong hydrocarbon odour.	D		WEATHERED ROCK
				1.80	PID = 39.1 ppm BH114_1.6-1.7 ES 1.60-1.70 m 1.60 m			-	SHALE; grey/brown, inferred extremely weathered, with clay bandings, no odour. Hole Terminated at 1.80 m			
			2—		PID = 2 ppm				Target Depth Reached.			
			-									
			3—									
			-									
			-									
20-70-41.02			4									
2014-01-05 MJ; EIA 1.03 2014-01-05			-									
GU-10-41.02 S			- 5 —									
UD: EIA 1.4			-									
1001 - 1001			-									
			6									
104 L/argei L			-									
1/:10 8:30.1			7—									
61.02/21./#1			-									
rawingr lle>>			-									
120.051			8									
KEHOLE LU			-									
E2281/ BU			- 9									
OREHOLE 3			-									
OD IS AU BU			-									
			10—		This boreh	nole log	g shoul	ld be	read in conjunction with Environmental Investigations Austra	lia's a	accor	npanying standard notes.

Environmental Investigations					REHOLE: BH115
Austr Contamination Remediation Geoter	talia Project Del chnical Location 37- Position Rel Job No. E22	-39 Pavesi S fer to Figure 2817	nvestigation Street, Guildford West NSW e 2 Contractor HartGEO Pty I tment Trust Drill Rig Ute-mounted r Inclination -90°		Sheet1 OF 1Date Started10/12/15Date Completed10/12/15LoggedBADate: 10/12/15Checked JSDate: 14/12/15
Drilling	Sampling		Field Material Desc	ription	
METHOD PENETRATION WATER WATER DEPTH (metres)	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
LIQ LQ LQ LQ HQ LQ LQ LQ LQ LQ LQ LQ LQ LQ LQ LQ LQ LQ	BH115_0.2-0.3 ES 0.20-0.30 m 0.20 m PID = 3.1 ppm BH115_0.5-0.6 ES 0.50 m PID = 2.1 ppm BH115_1.1-1.2 ES 1.10 m PID = 1.8 ppm		CONCRETE: 200mm thick. FILL: Clayey SAND; fine grained, brown/orange, with some minor gravel, no odour. Silty CLAY; medium to high plasticity, orange/grey, with some ironstone mottles, strong hydrocarbon odour. SHALE; grey, inferred extremely weathered, no odour.	- D	CONCRETE HARDSTAND FILL RESIDUAL SOIL WEATHERED ROCK
	This borehole I	log should t	e read in conjunction with Environmental Investigations Austra	alia's accom	npanying standard notes.

Environmental Investigations Austr		ailed Site Inve	estination		BC	REHOLE: BH116
Contamination Remediation Geotec	chnical Location 37-3 Position Refe Job No. E228	39 Pavesi Stre er to Figure 2	eet, Guildford West NSW Contractor HartGEO Pty L			Sheet1 OF 1Date Started10/12/15Date Completed10/12/15LoggedBADate: 10/12/15Checked JSDate: 14/12/15
Drilling	Sampling		Field Material Desc	rintic	n	
METHOD FENETRATION RESISTANCE WATER WATER (metres)	SAMPLE OR	GRAPHIC LOG USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION		CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
	BH116_0.2-0.3 ES 0.20-0.30 m PID = 1.6 ppm BH116_0.6-0.7 ES 0.60-0.70 m 0.60 m PID = 1.8 ppm	-	CONCRETE: 200mm thick. FILL: Clayey SAND; fine grained, brown/orange, with some minor gravel, no odour. Silty CLAY; medium to high plasticity, orange/grey, with some ironstone mottles, strong hydrocarbon odour. SHALE; grey, inferred extremely weathered, no odour. SHALE; grey/brown, inferred extremely weathered, with clay bandings, no odour. Hole Terminated at 1.40 m Target Depth Reached.			CONCRETE HARDSTAND FILL RESIDUAL SOIL WEATHERED ROCK
	This borehole lo	og should be r	ead in conjunction with Environmental Investigations Austra	lia's a	accor	npanying standard notes.

E	nvi n v	ronı est	menta igat	ions `						BC	OREH	OLE: B	H117M
				Aust ation Geote	ralia Project	37-39 Refe E228	9 Pave r to Fig 817	si Str jure 2	estigation eet, Guildford West NSW Contractor HartGEO Pty ent Trust Drill Rig Ute-mounted Inclination -90°			Sheet Date Started Date Complete Logged BA Checked JS	1 OF 1 10/12/15 d 10/12/15 Date: 10/12/15 Date: 14/12/15
F			rilling		Sampling				Field Material Des	crintic	<u></u>		
METHOD	PENETRATION	_		DEPTH	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE			DETAILS
EA LB 1.03.GLB Log IS AU BOREHOLE 3 E22817 BOREHOLE LOGS.GP4 < <drawingfile> 14/122015 17:15 8,30.004 DaggeLab and In Stu Tool - DGD Ub; EIA 1.00 2014-07-05 Ph; EIA 1.00 2014-07-05 Ph</drawingfile>				 RL RL 1.20 1.70 1.70 2.40 2.40 6.00 6.00 6.00 - <l< th=""><th>BH117_0.0-0.1 ES 0.00-0.10 m 9ID = 1.8 ppm BH117_0.4-0.5 ES 0.40-0.50 m 0.40 m PID = 1.8 ppm BH117_1.0-1.1 ES 1.00-1.10 m 1.00 m PID = 1.7 ppm</th><th></th><th></th><th>CCH</th><th>FILL: SAND; fine to medium grained, dark brown/grey, with clay and gravel, no odour. Silty CLAY; medium to high plasticity, orange/grey, with some ironstone mottles, strong hydrocarbon odour. SHALE; grey, inferred extremely weathered, no odour. SHALE; grey/brown, inferred extremely weathered, with clay bandings, no odour. Hole Terminated at 6.00 m Borehole converted into monitoring well.</th><th>D</th><th></th><th></th><th>- Cuttings - Cuttings - Somm uPVC Casing - Bentonite</th></l<>	BH117_0.0-0.1 ES 0.00-0.10 m 9ID = 1.8 ppm BH117_0.4-0.5 ES 0.40-0.50 m 0.40 m PID = 1.8 ppm BH117_1.0-1.1 ES 1.00-1.10 m 1.00 m PID = 1.7 ppm			CCH	FILL: SAND; fine to medium grained, dark brown/grey, with clay and gravel, no odour. Silty CLAY; medium to high plasticity, orange/grey, with some ironstone mottles, strong hydrocarbon odour. SHALE; grey, inferred extremely weathered, no odour. SHALE; grey/brown, inferred extremely weathered, with clay bandings, no odour. Hole Terminated at 6.00 m Borehole converted into monitoring well.	D			- Cuttings - Cuttings - Somm uPVC Casing - Bentonite
EIA LIB 1.03.GLB Log I			10		This bore	nole log	g shoul	d be	read in conjunction with Environmental Investigations Aust	ralia's a	accompanyii	ng standard notes	5.

Г

	\land	$ \land $		DNS Austr on Geotec	alia Project	37-39 Refe E228	9 Pave r to Fig 317	si Str gure 2	estigation eet, Guildford West NSW Contractor HartGEO Pty Li ent Trust Drill Rig Ute-mounted rig Inclination -90°	td	BC	Sheet 1 OF 1 Date Started 10/12/15 Date Completed 10/12/15 Logged BA Date: 10/12/15 Checked JS Date: 14/12/15
			ling		Sampling				Field Material Desci			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
EA LIB 103 GL Log IS AU BOREHOLE 3 E22817 BOREHOLE LOGS/GPU < <drawingfiless -="" 07-05="" 103="" 12="" 14="" 15="" 17="" 2014="" 2015="" 30.004="" 8="" and="" dagelab="" dod="" ea="" fp;="" i="" in="" pd;="" pd<="" stiu="" th="" tool="" ub;=""><th></th><th>GWNE</th><th></th><th>1.10</th><th>BH118_0.4-0.5 ES 0.40-0.50 m 0.40 m PID = 3.2 ppm BH118_1.0-0.1 ES 1.00 m PID = 3.7 ppm BH118_1.0-1.1 ES 1.00-1.20 m PID = 3.6 ppm BH118_1.5-1.6 ES 1.50-1.60 m 1.50 m PID = 3.5 ppm</th><th></th><th></th><th></th><th>FILL: Clayey SAND; fine grained, brown/orange, with some minor gravel, no odour. SHALE; grey, inferred extremely weathered, no odour. Hole Terminated at 2.00 m Target Depth Reached.</th><th></th><th></th><th>FILL . WEATHERED ROCK . . .</th></drawingfiless>		GWNE		1.10	BH118_0.4-0.5 ES 0.40-0.50 m 0.40 m PID = 3.2 ppm BH118_1.0-0.1 ES 1.00 m PID = 3.7 ppm BH118_1.0-1.1 ES 1.00-1.20 m PID = 3.6 ppm BH118_1.5-1.6 ES 1.50-1.60 m 1.50 m PID = 3.5 ppm				FILL: Clayey SAND; fine grained, brown/orange, with some minor gravel, no odour. SHALE; grey, inferred extremely weathered, no odour. Hole Terminated at 2.00 m Target Depth Reached.			FILL . WEATHERED ROCK . . .
A LIB 1.03.GLB Log IS AL			- 10—		This boreh	nole log	g shoul	d be	ead in conjunction with Environmental Investigations Austra	lia's a	accor	mpanying standard notes.

Ei I r	nviro 1 v es	nm sti	<mark>ental</mark> gatio	ons 🔊	0_						BC	REHOLE: BH119
	\land	$ \land $	Remediatio	Austr	alia Project	37-39 Refe E228	9 Pave r to Fig 317	si Str gure 2	estigation eet, Guildford West NSW ? Contractor HartGEO Pty I ent Trust Drill Rig Ute-mounted r Inclination -90°			Sheet1 OF 1Date Started10/12/15Date Completed10/12/15LoggedBADate: 10/12/15Checked JSDate: 14/12/15
		Duil	line		Compliant							
\vdash	7		ling		Sampling			۲.	Field Material Desc			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
AD/T	-	GWNE	0	0.40	BH119_0.0-0.1 ES 0.00-0.10 m 0.00 m PID = 3 ppm			>	FILL: Clayey SAND; fine grained, brown/orange, with some minor gravel and mulch, no odour.	D	-	FILL .
			-		<u> - 0 - 5 ppm</u>				Hole Terminated at 0.40 m Target Depth Reached.			
			-									
			1									-
			-									
			-									
			2									
			-									
			-									
			3 —									-
			_									
			-									
			-									
14-07-05			4									-
A 1.03 20			-									
6 Prj: El.			-									
014-07-0			- 5									
A 1.03 2			-									
			-									
001 - DGI			-									
n Situ To			6 —									-
Lab and			-									
Datgel			-									
8.30.004			-									.
15 17:15			7—									-
4/12/20:			-									
File>> 1			-									.
<drawing< td=""><td></td><td></td><td>8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> .</td></drawing<>			8									.
s.GPJ <			-									.
LE LOG			-									.
SOREHO			-									
-22817 E			9 —									-
OLE 3 1			-									
I BOREH.			-									
DA IS AU			-									
EA LIB 1.03 GLB Log IS AU BOREHOLE 3 E22817 BOREHOLE LOGS GP1 <cd34 mgflex=""> 14/122019 17/18 8,30.004 Dargel Lab and In Situ Tool - DGD LID: EA 1.03 2014/07.05 P9; EA 1.03 2014/07.05</cd34>	1		10 —		This boreh	nole log	g shou	ld be	read in conjunction with Environmental Investigations Austr	alia's	accor	npanying standard notes.

ſ

EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT LOGS

Contamination Remediation Geotec	innical					
DRILLING/EXCAVATIO	N METHOD					
HA Hand Auger	•	RD	Rotary blade	or drag bit	NQ	Diamond Core - 47 mm
DTC Diatube Cor	ing	RT	Rotary Tricon	e bit	NMLC	
NDD Non-destruc	tive digging	RAB	Rotary Air Bla	st	HQ	Diamond Core - 63 mm
AS* Auger Screw	wing	RC	Reverse Circu	ulation	HMLC	Diamond Core - 63mm
AD* Auger Drillin	Ig	PT	Push Tube		BH	Tractor Mounted Backhoe
*V V-Bit		СТ	Cable Tool Ri	g	EX	Tracked Hydraulic Excavator
*T TC-Bit, e.g.	ADT	JET	Jetting		EE	Existing Excavation
ADH Hollow Auge	er	WB	Washbore or	Bailer	HANE	D Excavated by Hand Methods
PENETRATION/EXCAV	ATION RESISTA	NCE				
	Denid nenetnetien	/				at ward
	. Rapid penetration					
			•	•		lerate effort from equipment used.
H High resistance	Penetration/ exca	vation is p	ossible but at a	slow rate and	requires si	gnificant effort from equipment used.
R Refusal/ Practic	al Refusal. No fu	rther prog	ress possible wi	thout risk of da	amage or u	nacceptable wear to equipment used.
These assessments are sub	jective and are dep	endent on	many factors, i	ncluding equip	ment powe	er and weight, condition of
excavation or drilling tools a				0 1 1	•	
WATER		b - · ·		~		inten lana
¥	Water level at date	e snown		\triangleleft	Partial w	vater loss
\triangleright	Water inflow				Complet	te water loss
GROUNDWATER NOT OBSERVED	Observation of gr or cave-in of the t			ent or not, was	s not possi	ble due to drilling water, surface seepage
GROUNDWATER NOT ENCOUNTERED						ater could be present in less permeable een left open for a longer period.
SAMPLING AND TESTI	NG					
seating 30/80mm RW HW BB Sampling DS BDS GS WS	Where practical r Penetration occu Penetration occu Hammer double Disturbed Sample Bulk disturbed Sa Gas Sample Water Sample	rred under rred under bouncing o e	r the rod weight the hammer ar	only		iterval are reported
U63	Thin walled tube	sample - r	number indicate	s nominal sam	ple diame	ter in millimetres
Testing FP FVS PID PM PP WPT DCP CPT CPTu	Field Permeabilit Field Vane Shea Photoionisation I Pressuremeter te Pocket Penetrom Water Pressure t Dynamic Cone P Static Cone Pene Static Cone Pene	r test expre Detector re est over se neter test e rests Penetromet etration tes	essed as uncorr ading in ppm ection noted expressed as in: ter test st	strument readi	ng in kPa	= peak value, sr = residual value)
RANKING OF VISUALL	Y OBSERVABLE				(for specif	fic soil contamination assessment
• • • •	le evidence of cont			R = A		atural odours identified
	vidence of visible co		on	R=B		n-natural odours identified
- 5	contamination			R = C	0	e non-natural odours identified
	ant visible contamin	ation		R = D		on-natural odours identified
ROCK CORE RECOVER				_		
TCR = Total Core Recov	rery (%)	SCR	= Solid Core Re	ecovery (%)		RQD = Rock Quality Designation (%)
$=\frac{\text{Length of core recevered}}{\text{Length of core recevered}}$		Σ Length	ofcylindrical co	re recevered	100 :	$=\frac{\Sigma \text{Axial Lenghts of core} > 100 \text{ mm}}{\text{Length of core mm}} \times 100$
$= \frac{\text{Lengh of core run}}{\text{Lengh of core run}}$	x 100 =	=	Lengh of core r	un X	100	Lengh of core run
MATERIAL BOUNDARI	ES	=	Lengh of core r	un A		Lengh of core run X 100

Environm Investi Contamination	gatior	Australia		USED O			SOIL DESCE		
	FILL		.000.	RGANIC SO L, OH or Pt)		 	CLAY (CL, (CI or CH)	
		BLES or _DERS	**** **** **** **** ****	LT (ML or M	H)		SAND (SP o	or SW)	
20°2°	GRA GW)	VEL (GP or	Combinations sandy clay	of these basic s	ymbols may b	e used to	indicate mixed mater	ials such as	
Soil is broad	ly classifie	d and described in	STRATIGRAPHY Borehole and Test F aterial properties are	Pit Logs using th			en in AS1726 – 1993, ethods.	(Amdt1 –	
PARTICLE	SIZE CI	HARACTERISTI	CS	USCS SY	MBOLS				
Major Divi	sion	Sub Division	Particle Size	Major D	ivisions	Symbol			
	BOULDI	ERS	>200 mm	E	e e	GW	Well graded grav		
	COBBL	ES	63 to 200 mm	COARSE GRAINED SOILS More than 50% by dry mass less than 63mm is greater than 0.075mm	More than 50% of coarse grains are >2.mm	GP	sand mixtures, lit Poorly graded gra	vel and gravel-	
		Coarse	20 to 63 mm	0.0 ר	than 50 se grain >2.mm		sand mixtures, lit Silty gravel, gra		
GRAVE	EL	Medium	6 to 20 mm	dry n thar	arse	GM	mixtu	res.	
		Fine	2 to 6 mm	By of the set of the s	Mc CO	GC	Clayey gravel, gr mixtu	res.	
		Coarse	0.6 to 2 mm	COARSE GRAINED SOILS for than 50% by dry mass le 63mm is greater than 0.075	0% ains	SW	Well graded san sand, little o		
SAND)	Medium	0.2 to 0.6 mm	ARS than	More than 50% of coarse grains are <2 mm	SP	Poorly graded sa	nd and gravelly	
		Fine	0.075 to 0.2mm	ore to	e tha oarse re <2	SM	sand, little o Silty sand, sand		
	SILT		0.002 to 0.075 mn	thar	Mor of cc al	SC	Clayey sand, mixtu		
		STICITY PROPE		S han		ML	Inorganic silts of very fine sands,	low plasticity, rock flour, silty	
, percent	30			FINE GRAINED SOILS re than 50% by dry mass st than 63mm is less than 0.075mm	Liquid Limit less < 50%	CL	or clayey fir Inorganic clays of plasticity, gravell clays, silt	low to medium y clays, sandy	
¹ 1 x:		CL CI .		RAINED 1 50% by 63mm is 0.075mm	Liq	OL	Organic silts an clays of low		
QNI	20		он	thar han		MH	Inorganic silts of	high plasticity.	
STICITY INDEX		OL or ML	MH MH	FINE GRAINED More than 50% by less than 63mm is 0.075mm	Liquid Limit > than 50%	CH OH	Inorganic clays of Organic clays of plastic	medium to high	
PLAST	20	30 40 50	60 70			PT	Peat muck and organic		
MOISTURI							organic	00110.	
Symbol	Term	Description							
D	Dry	•	Is are free flowing.	Clays & Silts may	y be brittle or	friable and	powdery.		
М	Moist		han in the dry condit			nd gravels	tend to cohere.		
W Moisture co	Wet		water. Sands and gra			r liquid lim	it (WL) [» much great	or than	
		than, « much less					it (WE) [» much great	er unari,	
CONSISTEN	ICY			DENSITY					
Symbol	Term		Shear Strength	Symbol	Term		Density Index %	SPT "N" #	
VS S	Very So Soft		12 kPa 25 kPa	VL	Very Loose	se	< 15 15 to 35	0 to 4 4 to 10	
F	Firm		50 kPa	MD	Medium De	nsity	35 to 65	10 to 30	
St	Stiff	50 to	100 kPa	D	Dense		65 to 85	30 to 50	
VSt H	Very Sti		200 kPa	VD	Very Den	se	Above 85	Above 50	
In the absend		esults, consistenc					served behaviour of t n pressure and equip		
MINOR CO									
Term		nent Guide		Proportion by Mass					
Trace	or no diff	erent to general pr	y feel or eye but soil roperties of primary o	component		Fin	se grained soils: ≤ 5% e grained soil: ≤15%		
Some			by feel or eye but so operties of primary o		s little Coarse grained soils: 5 - 12% Fine grained soil: 15 - 30%				

TERMS FOR ROCK MATERIAL STRENGTH AND WEATHERING

CLASSIFICATION AND INFERRED STRATIGRAPHY

Soil is broadly classified and described in Borehole and Test Pit Logs using the preferred method given in AS1726 – 1993, (Amdt1 – 1994 and Amdt2 – 1994), Appendix A. Material properties are assessed in the field by visual/ tactile methods.

STRENGTH

Symbol	Term	Point Load Index, Is ₍₅₀₎ (MPa) [#]	Field Guide
EL	Extremely Low	< 0.03	Easily remoulded by hand to a material with soil properties.
VL	Very Low	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30 mm can be broken by finger pressure.
L	Low	0.1 to 0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
М	Medium	0.3 to 1	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.
Н	High	1 to 3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken with pick with a single firm blow; rock rings under hammer.
VH	Very High	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
EH	Extremely High	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

[#]Rock Strength Test Results

4

Point Load Strength Index, $Is_{(50)}$, Axial test (MPa)

Point Load Strength Index, Is(50), Diametral test (MPa)

Relationship between rock strength test result ($Is_{(50)}$) and unconfined compressive strength (UCS) will vary with rock type and strength, and should be determined on a site-specific basis. UCS is typically 10 to 30 x $Is_{(50)}$, but can be as low as 5 MPa.

ROCK MATERIAL WEATHERING

Sym	bol	Term	Field Guide						
RS		Residual Soil	Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported.						
EW	1	Extremely Weathered	Rock is weathered to such an extent that it has soil properties - i.e. it either disintegrates or can be remoulded, in water.						
DW	HW		Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or						
	MW	Distinctly Weathered	may be decreased due to deposition of weathering products in pores. In some environments it is convenient to subdivide into Highly Weathered and Moderately Weathered, with the degree of alteration typically less for MW.						
SW	1	Slightly Weathered	Rock slightly discoloured but shows little or no change of strength relative to fresh rock.						
FR	FR Fresh		Rock shows no sign of decomposition or staining.						

ABBREVIATIONS AND DESCRIPTIONS FOR ROCK MATERIAL AND DEFECTS

CLASSIFICATION AND INFERRED STRATIGRAPHY

Rock is broadly classified and described in Borehole Logs using the preferred method given in AS1726 – 1993, (Amdt1 – 1994 and Amdt2 – 1994), Appendix A. Material properties are assessed in the field by visual/ tactile methods.

		ESCRIP							
Layering					Stru				
Term		Descr	iption		Term				Spacing (mn
Massive		No lav	ering apparent			-	inated		<6
					-	nated			6 – 20
Poorly Devel	oped		ng just visible; litt	le effect on			bedded		20 - 60
,		proper				y bed			60 - 200
			ng (bedding, folia				edded		200 - 600
Well Develop	bed		t; rock breaks mo I to layering	bre easily		dy be			600 - 2,000
		-				UTICKI	y bedded		> 2,000
				RDEFECTIVE	E9				
Defect Type		Abbr.	Description		<u> </u>				
Joint		JT	or no tensile str acts as cement.	ength. May be c	losed o	r filled	l by air, wate	r or soil	ross which the rock has littl or rock substance, which
Bedding Par	ting	BP	sub-parallel to la	ayering/ bedding	. Beddi	ng ret	fers to the la	yering o	no tensile strength, parallel r stratification of a rock, ropy in the rock material.
Foliation		FL	Repetitive plana	ar structure para	llel to th	e she	ar direction	or perpe	endicular to the direction of (SH) and Gneissosity.
Contact		CO	The surface bet	ween two types	or ages	of ro	ck.		
Cleavage		CL							urfaces resulting from ism, independent of beddin
Sheared Sea Zone (Fault)		SS/SZ	spaced (often <	50 mm) parallel	and usi	ually s	smooth or sli	ckenside	ock substance cut by close ed joints or cleavage plane
Crushed Sea Zone (Fault)		CS/CZ	with roughly par		r bound	aries.			s of the host rock substanc ments may be of clay, silt,
Decompose Seam/ Zone		DS/DZ	Seam of soil su material in place		ith grac	lation	al boundarie	s, forme	ed by weathering of the roc
Infilled Sean	1	IS	formed by soil n	nigrating into joir	nt or op	en ca	vity.		roughly parallel boundaries
Schistocity		SH	of platy or prism	atic mineral gra	ins, suc	h as r	mica.		e to the parallel arrangemen
Vein		VN	Distinct sheet-lil or crack-seal gr		als crys	stallise	ed within roc	k throug	h typically open-space fillir
ABBREVIAT	IONS A	ND DES	CRIPTIONS FO	R DEFECT SHA	PE AN	D RO	UGHNESS		
Shape	Abbr.	Descri	ption	Roughness	Abbr.	Des	cription		
Planar	PI	Consis	stent orientation	Polished	Pol	Shin	y smooth su	rface	
Curved	Cu	Gradu orienta	al change in ation	Slickensided	SL	Groo	oved or striat	ed surfa	ace, usually polished
Undulating	Un	Wavy	surface	Smooth	S	Smo	oth to touch	. Few or	no surface irregularities
Stepped	St		r more well d steps	Rough	RF				ularities (amplitude genera coarse sandpaper
Irregular	lr	in orie	sharp changes ntation	Very Rough	VR	>1m	m. Feels like	e very co	ularities, amplitude general barse sandpaper
Drientation:			cal Boreholes – ned Boreholes –						the core axis.
ABBREVIATI	ONS A	ND DES	CRIPTIONS FOR	R DEFECT COA	TING		DEFECT A	PERTUR	RE
Coating	Abbr.	Descrip	otion				Aperture	Abbr.	Description
Clean			le coating or infill	ing			Closed	CL	Closed.
Stain	SNI	No visib	le coating but sui	faces are discol	oured b	y	Open		Without any infill material.
Veneer		A visible	coating of soil o to measure (< 1	r mineral substa		ually	Infilled	-	Soil or rock i.e. clay, talc,

Detailed Site Investigation Proposed Residential Development, 37 - 39 Pavesi Street, Guildford West NSW Report No. E22817 AA_Rev0

APPENDIX D Field Data Sheets

Detailed Site Investigation Proposed Residential Development, 37 - 39 Pavesi Street, Guildford West NSW Report No. E22817 AA_Rev0

APPENDIX E Chain of Custody and Sample Receipt Forms

CLIENT DETAILS	3	LABORATORY DETA	ILS	
Contact	Jessie Sixsmith	Manager	Huong Crawford	
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental	
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 9516 0722	Telephone	+61 2 8594 0400	
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499	
Email	Jessie.Sixsmith@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E22817 37-39 Pavesi St, Guildford West	Samples Received	Fri 11/12/2015	
Order Number	E22817	Report Due	Fri 18/12/2015	
Samples	34	SGS Reference	SE147094	

_ SUBMISSION DETAILS

This is to confirm that 34 samples were received on Friday 11/12/2015. Results are expected to be ready by Friday 18/12/2015. Please quote SGS reference SE147094 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 33 Soils, 1 Water 11/12/2015 Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 11.6°C Standard Yes Yes

Samples will be held for one month for water samples and two months for soil samples from date of report, unless otherwise instructed.

COMMENTS -

35 soil samples unmarked for analyses on the COC have been placed on hold.

Asbestos will be sub sampled from the jar provided for sample BH104M_0.0-0.1, as a separate bag was not supplied for analysis.

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at

http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx as at the date of this document.

Attention is drawn to the limitations of liability and to the clauses of indemnification.

f +61 2 8594 0499

___ CLIENT DETAILS _

Client Environmental Investigations

Project E22817 37-39 Pavesi St, Guildford West

No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Metals in Soil by ICPOES	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	BH101_0.0-0.1	28	13	25	11	7	10	12	8
002	BH101_0.4-0.5	-	-	25	-	7	10	12	8
003	BH102_0.0-0.1	28	13	25	11	7	10	12	8
004	BH103_0.0-0.1	28	13	25	11	7	10	12	8
006	BH104M_0.4-0.5	28	13	25	11	7	10	12	8
007	BH105_0.0-0.1	28	13	25	11	7	10	12	8
009	BH106M_0.6-0.7	28	13	25	11	7	10	12	8
010	BH106M_0.9-1.0	-	-	25	-	7	10	12	8
011	BH107_0.2-0.3	28	13	25	11	7	10	12	8
012	BH108_0.2-0.3	28	13	25	11	7	10	12	8
013	BH109_0.2-0.3	28	13	25	11	7	10	12	8
014	BH109_0.7-0.8	-	-	25	-	7	10	12	8
015	BH110_0.3-0.4	28	13	25	11	7	10	12	8
016	BH111_0.2-0.3	28	13	25	11	7	10	12	8
017	BH111_1.1-1.2	-	-	25	-	7	10	12	8
018	BH112_0.2-0.3	28	13	25	11	7	10	12	8
019	BH113_0.2-0.3	28	13	25	11	7	10	12	8
020	BH114_0.2-0.3	28	13	25	11	7	10	12	8
021	BH114_1.0-1.1	-	-	25	-	7	10	12	8
022	BH115_0.2-0.3	28	13	25	11	7	10	12	8
023	BH115_0.5-0.6	-	-	25	-	7	10	12	8
024	BH116_0.2-0.3	28	13	25	11	7	10	12	8

_ CONTINUED OVERLEAF

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package.

Please indicate as soon as possible should your request differ from these details .

___ CLIENT DETAILS _

Client Environmental Investigations

Project E22817 37-39 Pavesi St, Guildford West

IMIMARY	OF ANALYSIS								
No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Metals in Soil by ICPOES	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
025	BH117_0.0-0.1	28	13	25	11	7	10	12	8
026	BH117M_1.0-1.1	-	-	25	-	7	10	12	8
028	BH118_0.4-0.8	28	13	25	11	7	10	12	8
029	BH119_0.0-0.1	28	13	25	11	7	10	12	8
030	QD-01	-	-	-	-	7	10	12	8
032	Trip Blank	-	-	-	-	-	-	12	-
033	SP1-1	28	13	25	11	7	10	12	8
034	SP1-2	28	13	25	11	7	10	12	8

_ CONTINUED OVERLEAF

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

___ CLIENT DETAILS _

Client Environmental Investigations

- SUMMARY OF ANALYSIS

Project E22817 37-39 Pavesi St, Guildford West

No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content
001	BH101_0.0-0.1	2	1	1
002	BH101_0.4-0.5	-	1	1
003	BH102_0.0-0.1	2	1	1
004	BH103_0.0-0.1	2	1	1
005	BH104M_0.0-0.1	2	-	-
006	BH104M_0.4-0.5	-	1	1
007	BH105_0.0-0.1	2	1	1
008	BH106M_0.2-0.3	2	-	-
009	BH106M_0.6-0.7	-	1	1
010	BH106M_0.9-1.0	-	1	1
011	BH107_0.2-0.3	2	1	1
012	BH108_0.2-0.3	2	1	1
013	BH109_0.2-0.3	2	1	1
014	BH109_0.7-0.8	-	1	1
015	BH110_0.3-0.4	2	1	1
016	BH111_0.2-0.3	2	1	1
017	BH111_1.1-1.2	-	1	1
018	BH112_0.2-0.3	2	1	1
019	BH113_0.2-0.3	2	1	1
020	BH114_0.2-0.3	2	1	1
021	BH114_1.0-1.1	-	1	1
022	BH115_0.2-0.3	2	1	1
023	BH115_0.5-0.6	-	1	1
024	BH116_0.2-0.3	2	1	1

_ CONTINUED OVERLEAF

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

___ CLIENT DETAILS _

Client Environmental Investigations

Project E22817 37-39 Pavesi St, Guildford West

	OF ANALYSIS						
No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
025	BH117_0.0-0.1	2	1	1	-	-	-
026	BH117M_1.0-1.1	-	1	1	-	-	-
027	BH118_0.0-0.1	2	-	-	-	-	-
028	BH118_0.4-0.8	-	1	1	-	-	-
029	BH119_0.0-0.1	2	1	1	-	-	-
030	QD-01	-	1	1	-	-	-
031	QR-01	-	-	-	9	12	8
032	Trip Blank	-	-	1	-	-	-
033	SP1-1	2	1	1	-	-	-
034	SP1-2	2	1	1	-	-	-

_ CONTINUED OVERLEAF

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

___ CLIENT DETAILS _

Client Environmental Investigations

Project E22817 37-39 Pavesi St, Guildford West

_	SUMMARY	OF ANALYSIS	 	
	No.	Sample ID	Mercury (dissolved) in Water	Trace Metals (Dissolved) in Water by ICPMS
	031	QR-01	1	7

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

source: M630_SR_20151211172633.pdf page: 3 SGS Ref: SE147094_COC

	Sheet	of					Sam	ple N	latrix									Ana	lysis	- Contractor						Comments
	^{Site:} 37 - 3	9 Paul	asi Sha	e+	Pro	oject No:													ty)							HMA
	Guildfo	rd We	est hs		E	22817			int, etc.)	PAHs	SHR							(change)	conductivity)							Arsenic Cadmium Chromium
		Unit 16, 3 ALEXANI	tralia 3 Maddox S DRIA NSW 2 4 0400 F: 02	2015	0499				OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/	HM ^A /TRH/BTEX/PAHs	HM ^A /TRH/BTEX	TRH/BTEX/Lead	IEX			S	pH / CEC (cation exchange)	pH / EC (electrical o	S	1		AHs	IM A	IM B	Copper Lead Mercury Nickel
	Sample	Laboratory	Container		Sampli	ng	WATER		HERS	P/O/	AAM	NAN	KH/B1	IRH/BTEX	PAHs	VOCs	Asbestos	/ CE	/ EC	sPOCAS	Hold		TCLP PAHs	TCLP HM A	TCLP HM ^B	ZinC
	ID	ID	Туре	Date	•	Time	WA	SOIL	OT	NH 00	H	H	TR	TH	PA	VC	As	Hd	Hd	sP	F		10	10	10	HM ^B Arsenic
	BH101_0.0-0.1		ZLB, J	10-12	-15	Am/Pm		1		/							/									Cadmium Chromium
	BH101_0.4-0.5	2	J			1		V			/															Lead
	BH101-0.9-1.0		Г					1													1					Mercury Nickel
	BH102_0.0-0.1	3	ZLB, J					~		1							1									
	BH102-0.6-0.7							/													1					
	BH102-0.9-10							1													1					LABORATORY TURNAROUND
	BH103.00-01	4	2LB, 5					1		1							~									Standard
	BH103-0.5-0.6	(T					V													1					24 Hours
	10414-0.0-01	5	J					~									1								1	48 Hours
	104m 1.0.4-0.5	6	J					1		1																72 Hours
	104m -0.8-0.9		5					/													1					Other
			J					1													1					·
Br	1104A <u>-1-2-1-3</u> Investigator: I	attest tha		les wer	re colle	ected in a	accorda	ance	Samp	ler's Na	me (EI)):			Recei	ved by	(SGS):			1	En	viron	me	ent	al	
			ard El field sa	amplina	Droce	dures.			JS/	BA											In	ves	tig	a	tio	ns 🚺
	Sampler's Co	Sampler's Comments:									Su	~~~~	ith		Prin	411	NS A	m	Shi)					Bren a	Australia
												11			Sign	Silver	01		-							n Geotechnical
	Container Type										uut				Date		The	15	40	111		e 6.01, 55			eet	
		ned, acid rins	Receiv)	IMP	ORT	2 – 1 ANT						110	1	,		PYR Ph:	MONT N 9516				1
		blvent washed, acid rins. Received: 11-Dec-2015 atural HDPE plastic bottle glass vial, Teflon Septum								e e-ma			y resu	Its to:	lab@)eiau	strali	a.co	m.au	· ·)eiaustra				COC July 2014 FORM v.2 - SGS

	Sheet 2	of	6			San	nple	Matrix	<								Ana	alysis							Comments
	Site: 37 - 3	39 Par	vesi Stra	eet P	roject No:													rity)							нм А
	Guildfo				22817			t, etc.)	AHs	AHS							hange)	nductiv							Arsenic Cadmium Chromium
		ALEXAN	stralia 33 Maddox S DRIA NSW 2 94 0400 F: 02	2015				OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/;	/TRH/BTEX/PAHs	HM ^A /TRH/BTEX	TRH/BTEX/Lead	EX			S	CEC (cation exchange)	pH / EC (electrical conductivity)	6			AHs	ΔM	HM B	Copper Lead Mercury Nickel
	Sample	Laboratory	Container	Sampl	ling	WATER		IERS	P/OF	ΠĀΠ	∏ ¥ /T	H/BT	TRH/BTEX	PAHs	VOCs	Asbestos	/ CE	/EC	sPOCAS	Hold		TCLP PAHs	TCLP HM A	H	ZinC
	ID	ID	Туре	Date	Time	WA.	SOIL	011	NH O	HM A	HN	TR	TR	PAI	VO	Ast	/ Hd	Hd	sP(Ma		TCI	TCI	TCLP	HM ^B
	BH105-0.0-0.1	7	ZLB, J	10-12-15	Am/pm		1		1				-			1									Arsenic Cadmium
	BH105-0.6-0.7		J				V													1					Chromium Lead
	BH105-0.8-0.9		J				1													1					Mercury Nickel
	BH105-14-15		5				1													1					
34	106-0-2-0.3	8	ZLB,J		V									1											
SHI	06m-06-0.7	9	J				1		~																LABORATORY TURNAROUND
1	06m-0.9-1.0	10	2				~			1															Standard
1	106mg-1.7-1.8		J				~													~					24 Hours
	06mi-2.0-2.1		J				1													1					48 Hours
1	06m-3.0-3.1		J				1													1					72 Hours
1	106 m. 4.0-4.1		J				1													1					Other
1	34107-0.2-0.3	11	J,ZLB	1			2		1							1			T						
[nvestigator: I a	attest that	these sample	es were colle	cted in ac	corda	nce	Sample	er's Nam	ne (EI):				Receiv	ed by (S	SGS):			1	Env	iron	me	nta		4
	wi	th standa	d El field sar			JS1	BA	<i>Far</i>										Inv	est	iq	at	io	ns ル		
	Sampler's Con	nments:			Print	sie	SIX	m	ith		Print	NU	lis	Alv	im					-	and the second second	and the second			
					Signa	ture	uit			-	Signat		9	1,-		0					ation	Australia Geotechnical			
	Container Type: J= solvent washe	d, acid rinse	d,Teflon sealed		Date	1-12			510551		Date	YIT	tir	-4	m			6.01, 55			et				
F	S= solvent washe P= natural HDPE	d, acid r <mark>i</mark> nse plastic bottle	d glass bottle						RTA	AND DO NOT THE						IN		~ 1		h:	ONT NS 95160		09		
Z	/C= glass vial, Te ZLB = Zip-Lock Ba	eflon Septun ag	1			e-mail		atory	results	to: la	ab@e	eiaus	tralia	.com	n.au			iaustralia		.au		CCC July 2014 FORM v.2 - SGS			

Sheet 3	of	6			Sam	ple	Matrix									Ana	alysis	-							Comments
Site: 37 - 3		vesi Sta lest NS	eet -	Project No: E22817	-		tc.)	łs	s								1								HM <u>A</u> Arsenic Cadmium
Laboratory:	SGS Aus Unit 16, ALEXAN		Street, 2015)	-		OTHERS (i.e. Fibro, Paint, etc.)	A /TRH/BTEX/PAHs P/OP/PCB,	/TRH/BTEX/PAHs	/TRH/BTEX	TRH/BTEX/Lead	EX			S	pH / CEC (cation exchange)	pH / EC (electrical conductivity)					AHs	ΛA	ЛВ	Chromium Copper Lead Mercury Nickel
Sample	Laboratory	Container	Sam	pling	WATER		ERS	P/OF	4	ΑT	H/BT	TRH/BTEX	s T	Cs	Asbestos	/ CE(/EC	sPOCAS	Hold			TCLP PAHs	TCLP HM A	P HM	ZinC
ID	ID	Туре	Date	Time	INAT	SOIL	0TFO	HM A OCP/(MH	HM A	TR	TR	PAHs	VOCs	Ast	Hd	Hd	sPC	He			TCL	TCL	TCLP	нм₿
B107-08-09		J	10-12-15	Am/pm		1													/						Arsenic Cadmium
BH107-1.5-1-6		Т				/													1						Chromium Lead
BH108-0.2-0.3	12	ZLB, J				~		1							/										Mercury Nickel
B+1108-0.8-0.9		J				1													1						, uonoi
BH108-1.5-1.6		J			1													1							
BH109_0.2-0.3	B	ZLB, J				1		/							~						\neg				LABORATORY TURNAROUND
64109_0.7-0.8	14	J				/			1																
BH109-14-1.5		J				V													1			-			Standard
BH110-0-2-0.3		ZLB,J				~													/					_	24 Hours
BH110_ 0.3-0.4	15	ZLB, J				/		1							\checkmark					-					72 Hours
BH110-06-0.7		J				/													1		\neg	-		\neg	Other
BH110-0.9-1.0		2	1			1												\square	~						
Investigator: I a	attest that	these sample	es were coll	lected in ac	cordar	nce	Sample	er's Nam	ie (EI):				Receiv	ed by (SGS):				Em	viro		ne	nta		A
wi	th standa	rd El field sar	mpling proce	edures.			JS/	BA											In	ve	st	ia	at	io	ns ル
Sampler's Con	nments:				Print JES Signa	SIL	1		ith		Print M Signa	IL MU	P	flV a	12			1	T			Mark.	Australia		
Container Type:							Date	de	uff	6			Date	Su	1	NA 10	70			6.01,					Geotechnicai
J= solvent washed S= solvent washed	d, acid rinse	ed glass bottle	l, glass jaR					1-12		5				112	112	551		F	YRN	IONT	NSI	W 20		1999 - San	
P= natural HDPE VC= glass vial, Te ZLB = Zip-Lock Ba	flon Septun	- 1	IMPC Please			atory	results	s to: 🔓	ab@e	eiaus	tralia	a.com	n.au		Ph: ab@e	951 eiaust	l6 07 ralia		.au		COC July 2014 FORM y.2 - SGS				

Sheet 4	of	2			San	nple	Matrix	< l								Ana	alysis								Comments
^{Site:} 37 - 3				Project No	:												T				Τ				HM <u>A</u> Arsenic
Guildfe	ord W	lest us	Ś	E22817			t, etc.)	AHS	Hs							hange	nduct								Cadmium Chromium
Laboratory:	Unit 16, ALEXAN	stralia 33 Maddox S IDRIA NSW 2 94 0400 F: 02	2015)			(i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHs OCP/OP/PCB/	/TRH/BTEX/PAHs	HM ^A /TRH/BTEX	TRH/BTEX/Lead	EX			s	pH / CEC (cation exchange)	pH / EC (electrical conductivity)		~			AHs	MA	HMB	Copper Lead Mercury Nickel
Sample	Laboratory	Container	Sam	pling	WATER		OTHERS (i.e.	P/OI	HM A /T	∏ ^A ∏	H/BT	TRH/BTEX	PAHs	VOCs	Asbestos	/ CE	/EC	sPOCAS	Hold			TCLP PAHs	TCLP HM A	HI	ZinC
ID	ID	Туре	Date	Time	WA.	SOIL	E E	H OO	HN	HN	TR	TR	PA	0V	Ast	Hd	Hd	sP(X			TCI	TCI	TCLP	HM ^B
BH110_1.9-2.0		J	10-12-15	5 Am/pr		1													1						Arsenic Cadmium
BHII1_ 0.2-0.3	No	ZLB, J				~		1							1										Chromium Lead
BHIII - 0.5-0.6		J,ZLB				1													1						Mercury Nickel
BHIII - 1.1-1.2	17	J				1			1																Nongi
BH111-1.9-2.0		5			1													1							
BH112-0.2-0.3	8	21B, J				1		/							1						1				LABORATORY
BH112-0.8-0.9		2				V													1						
BH113-0.2-0.3	19	zlb,J				~		\checkmark							1							-+			Standard
BH113_0.7-08		7				~													~						24 Hours
BH114_0.2-03	20	ZUB, J				1		\checkmark							1						+	+	-		48 Hours
BH114-0.5-0.6		7				V															+				Other
BH14-1.0-1.1	21	2	V			/			1		-				\rightarrow								-+		
Investigator: I a	attest that	these sample	es were coll	ected in ac	corda	nce	Sample	er's Nan	ne (EI):				Receiv	ed by (SGS):				Em	viro		101	nta		A
wi	ith standa	rd El field sar	npling proce	edures.			JS1	BA	No. 1932										In	ves	ti	a	at	io	ns ル
Sampler's Con	nments:						Print JES		Civ	1001	·H		Print	ucl	10	ÅI	VM					9			
e							Signa	ture	1	1			Signal		11	11	V //		Conta	aminati	on	Rer	nedi	ation	Australia Geotechnical
Container Type: J= solvent washe		d Teflon socied	doss iop				Date		utt			\rightarrow	Date	0	12	tis	47	16	Suite	6.01, 5	5 M	iller	Stre		
S= solvent washe P= natural HDPE	d, acid rinse plastic bottle	ed glass bottle e	, yiass jär				IMPC	I-12)					up)	12	F/		PYRN Ph:	10NT N 9516			09		
VC= glass vial, Te ZLB = Zip-Lock Ba	eflon Septun ag	1	0	Please			ratory	results	s to: la	ab@e	eiaus	tralia	a.com	n.au			eiaustra			.au		COC July 2014 FORM v.2 - SGS			

	Sheet	of(San	nple N	/latrix									Ana	lysis							Comments
	Site: 37 - 3	39 Par	vesi Stra	eet	-	roject No:			0									ge)	conductivity)							HM <u>A</u> Arsenic
	Guildfe			~	C	22817			Paint, etc.)	AHs	AHs							chanç	npuc							Cadmium Chromium
	Laboratory:	Unit 16, 3 ALEXAN	stralia 33 Maddox S DRIA NSW 2 94 0400 F: 02	2015	499				OTHERS (i.e. Fibro, Pai	HM A /TRH/BTEX/PAHS OCP/OP/PCB/	HM ^A /TRH/BTEX/PAHs	HM ^A /TRH/BTEX	TRH/BTEX/Lead	EX			S	pH / CEC (cation exchange)	pH / EC (electrical o	6	~		AHs	MA	HMB	Copper Lead Mercury Nickel
	Sample	Laboratory	Container	s	Sampli	ng	WATER	_	HERS	A / A /	NAN	NAN	KH/B1	TRH/BTEX	PAHs	VOCs	Asbestos	/ CE	/ EC	sPOCAS	Hold		TCLP PAHs	TCLP HM A	TCLP H	ZinC
	ID	ID	Туре	Date		Time	MA	SOIL	DTO	HO	H	H	TR	TR	PA	VC	As	Hd	Hd	sP	X		10	TC	TC	HM ^B Arsenic
	BH114-16-1.7		J	10-12	-15	Am/pm		1													1					Cadmium
	BH115_0.2-0.3		213, 5					1		1							1									Chromium Lead
	BH115_3.5-0.6	23	J					1			1															Mercury Nickel
	BH115-1.1-1.2		J					~													/					
	BH116_8.2-0.3	24	ZLB, J					1		1							/									
	34116-0.6-0.7		5					~													~					LABORATORY TURNAROUND
	34117-0.0-0.1	25	203,5					1		~							1									
BHIL	7 M-0.4-05		J					V													\checkmark					Standard
	17 M. 1.0-1.1	26	5					~			1															48 Hours
1	11110-1.6-1.7		J					1													~					72 Hours
	H118_0.0-0.1	27	213,5					V									/								-	Other
	H118-0.4-0.5	22	J	Ţ		T		~		1																
Г	vestigator: I a	attest that th standar	these sample d El field sar	cted in acc lures.	corda	ice	Sample	er's Nam	ne (EI):	l.			Receiv	ed by (SGS):		l-		Env	iron	me	nta		ns ル		
-	Sampler's Con	nments:				Print	SIC	1	1	ith		Print Signa	MU	hs	Ao	SM		1		1	Ser.S	at the	Australia Geotechnical			
S F V	Container Type: = solvent washe = solvent washe = natural HDPE C= glass vial, Te LB = Zip-Lock Ba	d, acid rinse plastic bottle eflon Septum	d glass bottle		MPC	00 11-1 2 0RTA e-mai	NT:	5	result	s to:	Date (eiaus		it i	in P	'	PYRM Ph:	0.01, 55 ONT NS 9516 (ialstrali	SW 2 1722	009	eet	CCC July 2014 FORM y.2 - SGS				

Sheet6_ of							Sample Matrix Analysis														Comments					
Site: 37-39 Pavesi Street Project No:					:												vity)								HM <u>A</u> Arsenic	
Guildford West NSW E22817							nt, etc.)	AHs stos	AHs							change	onducti								Cadmium Chromium	
Laboratory: SGS Australia Unit 16, 33 Maddox Street, ALEXANDRIA NSW 2015 P: 02 8594 0400 F: 02 8594 0499							OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX	TRH/BTEX/Lead	EX.			S	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	S				AHs	M≜	HM B	Copper Lead Mercury Nickel	
Sample ID	Laboratory ID	Container Type	Sampling			WATER		IERS	PIOF	HM A /T	HM A /T	H/B1	ER BTEX	PAHs	VOCs	Asbestos	/ CE	/EC	sPOCAS	019			TCLP PAHs	TCLP HM A	TCLP H	ZinC
			Date		Time	WA.	SOIL	OTH	N O I	HN	HN	TR	Ħ	PA	0V	Asl	Hd	Hd	SP	Ho.			TC	TC	TC	Arsenic Cadmium
BH118-1.0-1.1		J	10-12	-15	Amien		1													1						
BH118-1.5-1.6		Т	1				1													/						Chromium Lead
BH119_0.0-0.1	29	ZLB, J					V		1																	Mercury Nickel
00-01	30	J					V				~															
QD-02		I					~													1						
QR-01	3	VCX2, P,S				1					~															LABORATORY TURNAROUND
TripBlank	32	7					1						1													Standard
SP1-1	33	J, ZLB					1		1																	24 Hours
SP1-2	34	JILB	V		1		~		/																	48 Hours
																										72 Hours
																										Other
Investigator: I attest that these samples were collected in accordance									Sampler's Name (EI):						Received by (SGS):											
with standard El field sampling procedures.								JS/BA												Environmental Investigations						
Sampler's Comments:								Print						MILILO EUSTU					1							
									JESSIE Sixmith Signatures						Signature					Contamination Remediation Geotechnical						
Container Type:								Date Date Date Wind 15 H										Suite 6.01, 55 Miller Street								
J= solvent washed, acid rinsed,Teflon sealed, glass jaR S= solvent washed, acid rinsed glass bottle P= natural HDPE plastic bottle								II-12-15 [UPIUL' MAN											PYRMONT NSW 2009 Ph: 9516 0722							
VC= glass vial, Teflon Septum ZLB = Zip-Lock Bag								Please e-mail laboratory results to: lab@eiaustralia.com.au lab@eiaustralia.com.au											COC July 2014 FORM v.2 - SGS							

AU.SampleReceipt.Sydney (Sydney)

From:Jessie Sixsmith - Environmental Investigations [jessie.sixsmith@eiaustralia.com.au]Sent:Monday, 21 December 2015 2:37 PMTo:AU.Environmental.Sydney (Sydney); AU.SampleReceipt.Sydney (Sydney)Subject:RE: Report Job SE147094, your reference E22817 37-39 Pavesi St, Guildford West, order number E22817

Hi SGS,

Can I please get the following additional analysis undertaken on a standard TAT:

Kind regards,

Jessie Sixsmith | Environmental Scientist Environmental Investigations Australia Pty Ltd Suite 6.01, 55 Miller Street, Pyrmont NSW 2009 T 02 9516 0722 |M 0434 851 353| F 02 9518 5088 W www.eiaustralia.com.au | E jessie.sixsmith@eiaustralia.com.au

CONFIDENTIALITY - This email contains confidential and priv not the intended recipient, our apologies - please destroy : appropriately re-address it. Disclosure, copying, distribut: this email is strictly prohibited.

'e

-----Original Message-----From: <u>AU.Environmental.Sydney@SGS.com</u> [mailto:<u>AU.Environmental.Sydney@SGS.com</u>] Sent: Friday, 18 December 2015 3:56 PM To: Jessie Sixsmith - Environmental Investigations; Laboratory Results - Environmental Investigations Subject: Report Job SE147094, your reference E22817 37-39 Pavesi St, Guildford West, order number E22817

Dear Jessie,

Please find attached the report for SGS job SE147094, your reference E22817 37-39 Pavesi St, Guildford West, order number E22817.

-IMPORTANT INFORMATION ABOUT YOUR REPORT-To align with NEPM 1999 (2013), SGS Environmental has changed the way Silica Gel Clean-up of TRH extracts is reported. TPH Silica Gel has now become TRH – Silica. NEPM 1999(2013) seeks to clarify TRH and TPH in Schedule B3, 10.2.7.

If you have any questions or concerns, please don't hesitate to contact your SGS Client Services representative.

Regards, Erin Adams

Information in this email and any attachments is confidential and intended solely for the use of the individual(s) to whom it is addressed or otherwise directed. Please note that

CLIENT DETAILS	S	LABORATORY DETA	ILS	
Contact	Jessie Sixsmith	Manager	Huong Crawford	
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental	
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 9516 0722	Telephone	+61 2 8594 0400	
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499	
Email	Jessie.Sixsmith@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E22817 37-39 Pavesi St Guildford - Add	Samples Received	Mon 21/12/2015	
Order Number	E22817	Report Due	Wed 30/12/2015	
Samples	36	SGS Reference	SE147094A	

_ SUBMISSION DETAILS

This is to confirm that 36 samples were received on Monday 21/12/2015. Results are expected to be ready by Wednesday 30/12/2015. Please quote SGS reference SE147094A when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 3 Soils 21/12/15@2:37pm Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled Email Yes 11.6°C Standard Yes Yes

Samples will be held for one month for water samples and two months for soil samples from date of report, unless otherwise instructed.

COMMENTS -

Asbestos will be sub sampled from the jar provided for sample BH104M_0.0-0.1, as a separate bag was not supplied for analysis.

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at

http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx as at the date of this document.

Attention is drawn to the limitations of liability and to the clauses of indemnification.

t +61 2 8594 0400 f +61 2 8594 0499

___ CLIENT DETAILS _

Client Environmental Investigations

Project E22817 37-39 Pavesi St Guildford - Add

- SUMMARY	OF ANALYSIS				
No.	Sample ID	Fibre Identification in soil	Moisture Content	TRH (Total Recoverable Hydrocarbons) in Soil	Volatile Petroleum Hydrocarbons in Soil
026	BH117M_1.0-1.1	2	-	-	-
035	BH114_1.6-1.7	-	1	10	8
036	BH118_1.0-1.1	2	-	-	-

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

Sheet	of		to régione en		Sam	nple N	Matrix Analysis C										Comments								
Guildfo	ite: 37-39 Pavesi Street Project No: Guildford West NSW E22817 aboratory: Envirolab Services						aint, etc.)	(/PAHs bestos	/PAHs							exchange)	pH / EC (electrical conductivity)								HM ^A Arsenic Cadmium Chromium Copper
Laboratory	12 Ashle	VOOD NSW 2	2067			-	OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs	/TRH/BTEX	TRH/BTEX/Lead	TEX			SO	pH / CEC (cation exchange)	C (electrical	St	9				TCLP PAHs	TCLP HM ^B	Lead Mercury Nickel ZinC
Sample	Laboratory	Container	Sam	oling	WATER	1	HERS	MA, CP/O	MAI	HM A /	RH/B	TRH/BTEX	PAHs	VOCs	Asbestos	H/CI	H/EC	sPOCAS	Holop				CLPI	CLP	
ID	ID	Туре	Date	Time	Ŵ	SOIL	10	ĪŌ		Ī	F	F	à	>	Ř	đ	pt	S	1				Ĕ	F	HM ^B Arsenic
QT-01	A	2	10-12-15	AMPA	,	V	-	а. 	~		1	-													Cadmium Chromium
QT-02	2	5	10-12-15	Am Pm	-	/													~						Lead Mercury
																									Nickel
						1												εń	VIROLA	8	1	b Servi 2 Ashle d NSW 2	V St		LABORATORY
					-													1.1.1	b No:		Ph: (02)	9910 6	2007 200		TURNAROUND
			1 g 1															Da Tir	ate Rec me Rec	eived:	11/12	201	5		Standard
										х.			-					Re Te	eceived	by: F	pient		1	12.6	
1					-													Se	ooling: I ecurity:	ntact/E	oken/	None			72 Hours
					-				i dara	2 - 5 - 1		-							*						
Investigator:	I attest that	I It these samp	l bles were co	llected in a	accord	lance	Sam	oler's Na	ime (El):	1		Rece	l ived by	l (Enviro	olab):			En	ivi	on	me	ent	al	
	with standard EI field sampling procedures.						_	SIBI	4					P.Le	3				In	Ve	es	tig	ja	tic	ons Ma
Sampler's C	Sampler's Comments:						Print Jessie syssmith Signature							nt	3				Cor	ntami	natio	nIR	eme	diatio	Australia
J= solvent was	Container Type: J= solvent washed, acid rinsed,Teflon sealed, glass jaR						Dale									– Suite 6.01, 55 Miller Street PYRMONT NSW 2009									
P= natural HD VC= glass vial	G= solvent washed, acid rinsed glass bottle P= natural HDPE plastic bottle /C= glass vial, Teflon Septum /LB = Zip-Lock Bag						IMPORTANT: Please e-mail laboratory results to: lab@eiaustralia.com.au								u	Ph:		9516	COC July 2014 FORM v.2 - Envirolab						

Client Details	
Client	Environmental Investigations
Attention	Jessie Sixsmith

Sample Login Details									
Your Reference	E22817, Guildford West								
Envirolab Reference	139015								
Date Sample Received	11/12/2015								
Date Instructions Received	11/12/2015								
Date Results Expected to be Reported	18/12/2015								

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	2 Soils
Turnaround Time Requested	Standard
Temperature on receipt (°C)	12.6
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolabservices.com.au	Email: jhurst@envirolabservices.com.au

Sample and Testing Details on following page

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

Sample Id	vTRH(C6- C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Acid Extractable metals in soil	On Hold
QT-01	1	1	1	1	
QT-02					1

Sheet of Sample Matrix												Analysis													Comments
Site: 37 - 39 Pavesi Street, Guildford West E22817 Laboratory: SGS Australia Unit 16, 33 Maddox Street, ALEXANDRIA NSW 2015 P: 02 8594 0400 F: 02 8594 0499							OTHERS (i.e. Fibro, Paint, etc.)	/TRH/BTEX/PAHs 0P/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs/VOCS	/ТКН/ВТЕХ	TRH/BTEX/Lead	TEX			SC	:C (cation exchange)	pH / EC (electrical conductivity)	S				AHs	AM≜	HM B	HM A Arsenic Cadmium Chromium Copper Lead Mercury Nickel
Sample ID	Laboratory ID	Container Type	Sampli	ng Time	WATER	SOIL	DTHERS	HM A /TF OCP/OP/	HM A /	HM A /	TRH/B1	HEU/BTEX	PAHs	VOCs	Asbestos	pH / CEC	pH / EC	sPOCAS				TCLP PAHs	TCLP HM A	TCLP H	ZinC HM ^B
BHIOYM	٢		15-12-15			0)			/								1								Arsenic Cadmium
BH106M	2	1.1000	1	1	1				\checkmark																Chromium Lead
BHII7M	3				/				/																Mercury Nickel
GWQD-1	4				/																				
QR-2	5	V			/					/															LABORATORY
TIPSPIKe	4	VC	\checkmark	V	/							1													TURNAROUND
																_	SE1	472	2 50 6 - D	CO ec - 20	C 015				Standard 24 Hours 48 Hours 72 Hours Other
Investigator: I v		t these samp ard El field sa			accorda	ance	Samp	ler's Na	me (EI):			Rece	ived by	(565):					VIP	es l	me tig	a	al tic	ons ル
Sampler's Comments: Container Type: J= solvent washed, acid rinsed,Teflon sealed, glass jaR S= solvent washed, acid rinsed glass bottle P= natural HDPE plastic bottle VC= glass vial, Teflon Septum ZLB = Zip-Lock Bag							Print JESSIE Sussmith. Signature JULIUS AWAM Signature Julius AWAM Signature Julius AWAM Suite 6.0 PYRMO IMPORTANT: Print JULIUS AWAM Signature Date Date IMPORTANT: Print JULIUS AWAM Signature Date Print JULIUS AWAM Signature Print JULIUS AWAM Signature Print JULIUS AWAM Suite 6.0 PYRMO Ph:								tamir e 6.0 MON 9	nation 1, 55	n R Mille SW 2 0722	eme er Str 2009	diatio reet	Australia n Geotechnical					

CLIENT DETAILS	3	LABORATORY DETA	NILS
Contact	Jessie Sixsmith	Manager	Huong Crawford
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9516 0722	Telephone	+61 2 8594 0400
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499
Email	Jessie.Sixsmith@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E22817 - Pavesi Street Guildford West	Samples Received	Wed 16/12/2015
Order Number	E22817	Report Due	Wed 23/12/2015
Samples	6	SGS Reference	SE147250

_ SUBMISSION DETAILS _

This is to confirm that 6 samples were received on Wednesday 16/12/2015. Results are expected to be ready by Wednesday 23/12/2015. Please quote SGS reference SE147250 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received 6 Waters 16/12/2015 Yes SGS Yes Ice Bricks Yes Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 8.7°C Standard Yes Yes

Samples will be held for one month for water samples and two months for soil samples from date of report, unless otherwise instructed.

COMMENTS -

Job Details : 37-39 Pavesi Street Guildford West

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at

http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx as at the date of this document.

Attention is drawn to the limitations of liability and to the clauses of indemnification.

t +61 2 8594 0400 f +61 2 8594 0499

___ CLIENT DETAILS _

Client Environmental Investigations

Project E22817 - Pavesi Street Guildford West

- SUMMARY	OF ANALYSIS		1	1	I	1	1
No.	Sample ID	Mercury (dissolved) in Water	PAH (Polynuclear Aromatic Hydrocarbons) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
001	BH104M	1	22	7	9	79	8
002	BH106M	1	22	7	9	79	8
003	BH117M	1	22	7	9	79	8
004	GWQD-1	1	-	7	9	12	8
005	QR-2	1	-	7	9	12	8
006	Trip Spike	-	-	-	-	12	-

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

Sheet																				Comments								
Site: 37-39 GMId Laboratory:	Poive ford We Envirolab 12 Ashley	Si Strees est NSI Services y Street VOOD NSW 2		roject No:			OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs	HM ^A /TRH/BTEX	TRH/BTEX/Lead	EX			SC	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Ø					AHs	HM B	HM ^A Arsenic Cadmium Chromium Copper Lead Mercury Nickel			
Sample	Laboratory	Container	Samp	ing	WATER		HERS		N A N	N A N	KH/B1	TRH/BTEX	PAHs	vocs	Asbestos	I/CE	I / EC	sPOCAS					TCLP PAHs	TCLP HM	ZinC			
ID	ID	Туре	Date	Time	WA	SOIL	ŤO	Ξŏ	H	H	Ĕ	۲Ľ	PA	×	As	Hd	Hq	SP					¥	Ţ	HM ^B Arsenic			
GWQT-1	1-	S, P, 2XVC	15-12-15	Anten	X					V															Cadmium			
and the second second		regime de		-						100				 11 11 				1							Chromium Lead			
																				5-					Mercury Nickel			
				1									1					6		Env	irolab S	ervices						
																					ENVIR	Ch.	Chatsv	12 As	hiey St W 2067		1. A.	
				-		-												Job N	10: 92:	1.1		0 6200			LABORATORY			
1.0					-											+		-:ar:: F	eceive	0:17	112		10.0					
																		Rincen	eceive	84	Pan				Standard			
					-			-										Temp: Coolin	g: Ice/Ic ty: Infat	mbient epack	12	C			24 Hours			
	10 M														×			Securi	ty: Infat	Brok	en/Non	e	-		48 Hours			
		-																				1.433		2	72 Hours			
																				ļ	ļ				Other			
							· · ·																					
		at these samp			accord	lance	Sam	oler's Na	ime (El):			Rece	eived by	/ (Envir	olab):			Er	ivi	ron	me	ent	al				
	with stand	ard El field sa	ampling proc	edures.									÷.,	-	(195) (195)				In	IVE	es	tig	ja	tic	ons 🇤			
Sampler's C	Sampler's Comments:						Pri	int_ SSI-e	LIK	smit	fb	> 10	Pri	nt	PH										Australia			
						Signature							nature	10	1	15	2	Contamination Remediation										
	container Type:				Dale										Suite 6.01, 55 Miller Street													
S= solvent was	solvent washed, acid rinsed,Teflon sealed, glass jaR solvent washed, acid rinsed glass bottle				Ib-12-15 I7/12 PYRMONT NSW 2009 IMPORTANT: Ph: 9516 0722																							
VC= glass vial	natural HDPE plastic bottle = glass vial, Teflon Septum B = Zip-Lock Bag						IMPORTANT: Ph: 9 Please e-mail laboratory results to: lab@eiaustralia.com.au lab@eiau											U	COC July 2014 FORM v.2 - Envirolab									

Client Details	
Client	Environmental Investigations
Attention	Jessie Sixsmith

Sample Login Details	
Your Reference	E22817, Guildford West
Envirolab Reference	139287
Date Sample Received	17/12/2015
Date Instructions Received	17/12/2015
Date Results Expected to be Reported	04/01/2016

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	1 Water
Turnaround Time Requested	Standard
Temperature on receipt (°C)	12.0
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

Please direct any queries to:

Aileen Hie	Jacinta Hurst					
Phone: 02 9910 6200	Phone: 02 9910 6200					
Fax: 02 9910 6201	Fax: 02 9910 6201					
Email: ahie@envirolabservices.com.au	Email: jhurst@envirolabservices.com.au					

Sample and Testing Details on following page

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

Sample Id	vTRH(CG- C10)/BTEXN in Water	svTRH (C10-C40) in Water	HM in water - dissolved
GWQT-1	1	1	1

Detailed Site Investigation Proposed Residential Development, 37 - 39 Pavesi Street, Guildford West NSW Report No. E22817 AA_Rev0

APPENDIX F Laboratory Analytical Reports

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS	
Contact	Jessie Sixsmith	Manager	Huong Crawford	
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental	
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 9516 0722	Telephone	+61 2 8594 0400	
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499	
Email	Jessie.Sixsmith@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E22817 37-39 Pavesi St, Guildford West	SGS Reference	SE147094 R0	
Order Number	E22817	Date Received	11/12/2015	
Samples	34	Date Reported	18/12/2015	

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all samples using trace analysis technique.

Sample #5: A portion of the sample supplied has been sub-sampled for asbestos according to SGS In-house procedures. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Environmental Services recommends supplying approximately 50-100g of sample in a separate container.

Sample #25: 2-4mm length fibre bundles x4 found loose in sample. Sample #27: 2-8mm length fibre bundles found in 30x20x4mm cement sheet fragment.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES -

Andy Sith

Andy Sutton Senior Organic Chemist

kinter

Ly Kim Ha Organic Section Head

Dong Liang Metals/Inorganics Team Leader

S. Ravender.

Ravee Sivasubramaniam Asbestos Analyst/Hygiene Team Leader

Kamrul Ahsan Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

18/12/2015

Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t Australia

t +61 2 8594 0400 f

f +61 2 8594 0499

www.sgs.com.au

SE147094 R0

VOC's in Soil [AN433/AN434] Tested: 14/12/2015

			BH101_0.0-0.1	BH101_0.4-0.5	BH102_0.0-0.1	BH103_0.0-0.1	BH104M_0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 10/12/2015	- 10/12/2015	- 10/12/2015	- 10/12/2015	- 10/12/2015
PARAMETER	UOM	LOR	SE147094.001	SE147094.002	SE147094.003	SE147094.004	SE147094.006
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH105_0.0-0.1	BH106M_0.6-0.7	BH106M_0.9-1.0	BH107_0.2-0.3	BH108_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.007	SE147094.009	SE147094.010	SE147094.011	SE147094.012
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH109_0.2-0.3	BH109_0.7-0.8	BH110_0.3-0.4	BH111_0.2-0.3	BH111_1.1-1.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.013	SE147094.014	SE147094.015	SE147094.016	SE147094.017
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH112_0.2-0.3	BH113_0.2-0.3	BH114_0.2-0.3	BH114_1.0-1.1	BH115_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 10/12/2015	- 10/12/2015	- 10/12/2015	- 10/12/2015	- 10/12/2015
PARAMETER	UOM	LOR	SE147094.018	SE147094.019	SE147094.020	SE147094.021	SE147094.022
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

SE147094 R0

VOC's in Soil [AN433/AN434] Tested: 14/12/2015 (continued)

			BH115_0.5-0.6	BH116_0.2-0.3	BH117_0.0-0.1	BH117M_1.0-1.1	BH118_0.4-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 10/12/2015	- 10/12/2015	- 10/12/2015	- 10/12/2015	- 10/12/2015
PARAMETER	UOM	LOR	SE147094.023	SE147094.024	SE147094.025	SE147094.026	SE147094.028
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH119_0.0-0.1	QD-01	Trip Blank	SP1-1	SP1-2
			SOIL	SOIL	SOIL	SOIL	SOIL
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.029	SE147094.030	SE147094.032	SE147094.033	SE147094.034
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Volatile Petroleum Hydrocarbons in Soil [AN433/AN434/AN410] Tested: 14/12/2015

			BH101_0.0-0.1	BH101_0.4-0.5	BH102_0.0-0.1	BH103_0.0-0.1	BH104M_0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.001	SE147094.002	SE147094.003	SE147094.004	SE147094.006
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH105_0.0-0.1	BH106M_0.6-0.7	BH106M_0.9-1.0	BH107_0.2-0.3	BH108_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.007	SE147094.009	SE147094.010	SE147094.011	SE147094.012
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH109_0.2-0.3	BH109_0.7-0.8	BH110_0.3-0.4	BH111_0.2-0.3	BH111_1.1-1.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.013	SE147094.014	SE147094.015	SE147094.016	SE147094.017
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH112_0.2-0.3	BH113_0.2-0.3	BH114_0.2-0.3	BH114_1.0-1.1	BH115_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.018	SE147094.019	SE147094.020	SE147094.021	SE147094.022
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH115_0.5-0.6	BH116_0.2-0.3	BH117_0.0-0.1	BH117M_1.0-1.1	BH118_0.4-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.023	SE147094.024	SE147094.025	SE147094.026	SE147094.028
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH119_0.0-0.1	QD-01	SP1-1	SP1-2
			SOIL	SOIL	SOIL	SOIL
						-
			10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.029	SE147094.030	SE147094.033	SE147094.034
TRH C6-C9	mg/kg	20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN4

403] Tested: 14/12	2/2015
--------------------	--------

			BH101_0.0-0.1	BH101_0.4-0.5	BH102_0.0-0.1	BH103_0.0-0.1	BH104M_0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 10/12/2015	- 10/12/2015	- 10/12/2015	- 10/12/2015	- 10/12/2015
PARAMETER	UOM	LOR	SE147094.001	SE147094.002	SE147094.003	SE147094.004	SE147094.006
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210	<210

			BH105_0.0-0.1	BH106M_0.6-0.7	BH106M_0.9-1.0	BH107_0.2-0.3	BH108_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 10/12/2015	- 10/12/2015	- 10/12/2015	- 10/12/2015	- 10/12/2015
PARAMETER	UOM	LOR	SE147094.007	SE147094.009	SE147094.010	SE147094.011	SE147094.012
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210	<210

			BH109_0.2-0.3	BH109_0.7-0.8	BH110_0.3-0.4	BH111_0.2-0.3	BH111_1.1-1.2
PARAMETER	UOM	LOR	SOIL - 10/12/2015 SE147094.013	SOIL - 10/12/2015 SE147094.014	SOIL - 10/12/2015 SE147094.015	SOIL - 10/12/2015 SE147094.016	SOIL - 10/12/2015 SE147094.017
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	52
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	72
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	82
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	82
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	120
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210	<210

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 14/12/2015 (continued)

			BH112_0.2-0.3	BH113_0.2-0.3	BH114_0.2-0.3	BH114_1.0-1.1	BH115_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	10/12/2015 SE147094.018	10/12/2015 SE147094.019	10/12/2015 SE147094.020	10/12/2015 SE147094.021	10/12/2015 SE147094.022
TRH C10-C14	mg/kg	20	<20	<20	<20	320	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	460	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	520	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	510	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	270	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	780	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	780	<210

			BH115_0.5-0.6	BH116_0.2-0.3	BH117_0.0-0.1	BH117M_1.0-1.1	BH118_0.4-0.8
PARAMETER	UOM	LOR	SOIL - 10/12/2015 SE147094.023	SOIL - 10/12/2015 SE147094.024	SOIL - 10/12/2015 SE147094.025	SOIL - 10/12/2015 SE147094.026	SOIL - 10/12/2015 SE147094.028
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210	<210

			BH119_0.0-0.1	QD-01	SP1-1	SP1-2
			SOIL	SOIL	SOIL	SOIL
			-	-	-	-
PARAMETER	UOM	LOR	10/12/2015 SE147094.029	10/12/2015 SE147094.030	10/12/2015 SE147094.033	10/12/2015 SE147094.034
TRH C10-C14		20	<20	<20		<20
181 010-014	mg/kg	20	~ 20	~20	73	~20
TRH C15-C28	mg/kg	45	<45	<45	140	<45
TRH C29-C36	mg/kg	45	<45	<45	230	68
TRH C37-C40	mg/kg	100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	84	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	84	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	290	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	440	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	440	<210

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 14/12/2015

			BH101_0.0-0.1	BH101_0.4-0.5	BH102_0.0-0.1	BH103_0.0-0.1	BH104M_0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.001	SE147094.002	SE147094.003	SE147094.004	SE147094.006
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			BH105_0.0-0.1	BH106M_0.6-0.7	BH106M_0.9-1.0	BH107_0.2-0.3	BH108_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.007	SE147094.009	SE147094.010	SE147094.011	SE147094.012
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 14/12/2015 (continued)

			BH109_0.2-0.3	BH109_0.7-0.8	BH110_0.3-0.4	BH111_0.2-0.3	BH111_1.1-1.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 3012	- 3012	- 3012	- 3012	-
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.013	SE147094.014	SE147094.015	SE147094.016	SE147094.017
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			BH112_0.2-0.3	BH113_0.2-0.3	BH114_0.2-0.3	BH114_1.0-1.1	BH115_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.018	SE147094.019	SE147094.020	SE147094.021	SE147094.022
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	1.8	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	0.4	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	0.3	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	0.6	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	1.0	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	4.4	<0.8

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 14/12/2015 (continued)

			BH115_0.5-0.6	BH116_0.2-0.3	BH117_0.0-0.1	BH117M_1.0-1.1	BH118_0.4-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 10/12/2015	- 10/12/2015	- 10/12/2015	- 10/12/2015	- 10/12/2015
PARAMETER	UOM	LOR	SE147094.023	SE147094.024	SE147094.025	SE147094.026	SE147094.028
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			BH119_0.0-0.1	SP1-1	SP1-2
			SOIL	SOIL	SOIL
			10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.029	SE147094.033	SE147094.034
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1
Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ	0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8

OC Pesticides in Soil [AN400/AN420] Tested: 14/12/2015

			BH101_0.0-0.1	BH102_0.0-0.1	BH103_0.0-0.1	BH104M_0.4-0.5	BH105_0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	10/12/2015 SE147094.001	10/12/2015 SE147094.003	10/12/2015 SE147094.004	10/12/2015 SE147094.006	10/12/2015 SE147094.007
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

SE147094 R0

			BH106M_0.6-0.7	BH107_0.2-0.3	BH108_0.2-0.3	BH109_0.2-0.3	BH110_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	10/12/2015 SE147094.009	10/12/2015 SE147094.011	10/12/2015 SE147094.012	10/12/2015 SE147094.013	10/12/2015 SE147094.015
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

SE147094 R0

			BH111_0.2-0.3	BH112_0.2-0.3	BH113_0.2-0.3	BH114_0.2-0.3	BH115_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	10/12/2015 SE147094.016	10/12/2015 SE147094.018	10/12/2015 SE147094.019	10/12/2015 SE147094.020	10/12/2015 SE147094.022
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

SE147094 R0

			BH116_0.2-0.3	BH117_0.0-0.1	BH118_0.4-0.8	BH119_0.0-0.1	SP1-1
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	10/12/2015 SE147094.024	10/12/2015 SE147094.025	10/12/2015 SE147094.028	10/12/2015 SE147094.029	10/12/2015 SE147094.033
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	0.2	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	0.2	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

SE147094 R0

			SP1-2 SOIL - 10/12/2015
PARAMETER	UOM	LOR	SE147094.034
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1
Lindane	mg/kg	0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1
Aldrin	mg/kg	0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2
Endrin	mg/kg	0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1
Isodrin	mg/kg	0.1	<0.1
Mirex	mg/kg	0.1	<0.1

OP Pesticides in Soil [AN400/AN420] Tested: 14/12/2015

			BH101_0.0-0.1	BH102_0.0-0.1	BH103_0.0-0.1	BH104M_0.4-0.5	BH105_0.0-0.1
			SOIL - 10/12/2015	SOIL - 10/12/2015	SOIL - 10/12/2015	SOIL - 10/12/2015	SOIL - 10/12/2015
PARAMETER	UOM	LOR	SE147094.001	SE147094.003	SE147094.004	SE147094.006	SE147094.007
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2

			BH106M_0.6-0.7	BH107_0.2-0.3	BH108_0.2-0.3	BH109_0.2-0.3	BH110_0.3-0.4
			SOIL - 10/12/2015	SOIL - 10/12/2015	SOIL - 10/12/2015	SOIL - 10/12/2015	SOIL - 10/12/2015
PARAMETER	UOM	LOR	SE147094.009	SE147094.011	SE147094.012	SE147094.013	SE147094.015
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2

			BH111_0.2-0.3	BH112_0.2-0.3	BH113_0.2-0.3	BH114_0.2-0.3	BH115_0.2-0.3
PARAMETER	UOM	LOR	SOIL - 10/12/2015 SE147094.016	SOIL - 10/12/2015 SE147094.018	SOIL - 10/12/2015 SE147094.019	SOIL - 10/12/2015 SE147094.020	SOIL - 10/12/2015 SE147094.022
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2

SE147094 R0

			BH116_0.2-0.3	BH117_0.0-0.1	BH118_0.4-0.8	BH119_0.0-0.1	SP1-1
			SOIL	SOIL	SOIL	SOIL	SOIL
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.024	SE147094.025	SE147094.028	SE147094.029	SE147094.033
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2

PARAMETER	лом	105	SP1-2 SOIL - 10/12/2015
Dichloryos	mg/kg	LOR 0.5	SE147094.034 <0.5
Dimethoate	mg/kg	0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2
Malathion	mg/kg	0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2
Methidathion	mg/kg	0.5	<0.5
Ethion	mg/kg	0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2

SE147094 R0

PCBs in Soil [AN400/AN420] Tested: 14/12/2015

			BH101_0.0-0.1	BH102_0.0-0.1	BH103_0.0-0.1	BH104M_0.4-0.5	BH105_0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.001	SE147094.003	SE147094.004	SE147094.006	SE147094.007
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH106M_0.6-0.7	BH107_0.2-0.3	BH108_0.2-0.3	BH109_0.2-0.3	BH110_0.3-0.4
PARAMETER	UOM	LOR	SOIL - 10/12/2015 SE147094.009	SOIL - 10/12/2015 SE147094.011	SOIL - 10/12/2015 SE147094.012	SOIL - 10/12/2015 SE147094.013	SOIL - 10/12/2015 SE147094.015
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH111_0.2-0.3	BH112_0.2-0.3	BH113_0.2-0.3	BH114_0.2-0.3	BH115_0.2-0.3
PARAMETER	UOM	LOR	SOIL - 10/12/2015	SOIL - 10/12/2015	SOIL - 10/12/2015	SOIL - 10/12/2015	SOIL - 10/12/2015 SE147094.022
Arochlor 1016	mg/kg	0.2	SE147094.016 <0.2	SE147094.018 <0.2	SE147094.019 <0.2	SE147094.020 <0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochior 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

SE147094 R0

PCBs in Soil [AN400/AN420] Tested: 14/12/2015 (continued)

			BH116_0.2-0.3	BH117_0.0-0.1	BH118_0.4-0.8	BH119_0.0-0.1	SP1-1
PARAMETER	UOM	LOR	SOIL - 10/12/2015 SE147094.024	SOIL - 10/12/2015 SE147094.025	SOIL - 10/12/2015 SE147094.028	SOIL - 10/12/2015 SE147094.029	SOIL - 10/12/2015 SE147094.033
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

PARAMETER	UOM	LOR	SP1-2 SOIL - 10/12/2015 SE147094.034
Arochlor 1016	mg/kg	0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1

Total Recoverable Metals in Soil by ICPOES [AN040/AN320] Tested: 15/12/2015

			BH101_0.0-0.1	BH101_0.4-0.5	BH102_0.0-0.1	BH103_0.0-0.1	BH104M_0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 10/12/2015	- 10/12/2015	- 10/12/2015	- 10/12/2015	- 10/12/2015
PARAMETER	UOM	LOR	SE147094.001	SE147094.002	SE147094.003	SE147094.004	SE147094.006
Arsenic, As	mg/kg	3	6	6	7	8	7
Cadmium, Cd	mg/kg	0.3	0.4	0.4	0.5	0.4	0.3
Chromium, Cr	mg/kg	0.3	14	12	18	12	12
Copper, Cu	mg/kg	0.5	11	16	16	16	11
Lead, Pb	mg/kg	1	18	15	20	27	16
Nickel, Ni	mg/kg	0.5	7.5	4.2	7.5	9.2	8.0
Zinc, Zn	mg/kg	0.5	35	35	45	99	28

			BH105_0.0-0.1	BH106M_0.6-0.7	BH106M_0.9-1.0	BH107_0.2-0.3	BH108_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 10/12/2015	- 10/12/2015	- 10/12/2015	- 10/12/2015	- 10/12/2015
PARAMETER	UOM	LOR	SE147094.007	SE147094.009	SE147094.010	SE147094.011	SE147094.012
Arsenic, As	mg/kg	3	7	7	5	3	6
Cadmium, Cd	mg/kg	0.3	0.5	0.3	<0.3	0.6	1.4
Chromium, Cr	mg/kg	0.3	9.8	12	78	17	26
Copper, Cu	mg/kg	0.5	22	15	15	49	61
Lead, Pb	mg/kg	1	150	20	12	22	52
Nickel, Ni	mg/kg	0.5	8.7	9.7	25	25	28
Zinc, Zn	mg/kg	0.5	480	43	23	83	220

			BH109_0.2-0.3	BH109_0.7-0.8	BH110_0.3-0.4	BH111_0.2-0.3	BH111_1.1-1.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.013	SE147094.014	SE147094.015	SE147094.016	SE147094.017
Arsenic, As	mg/kg	3	10	9	11	7	12
Cadmium, Cd	mg/kg	0.3	0.3	0.4	0.4	0.4	0.5
Chromium, Cr	mg/kg	0.3	15	14	16	12	20
Copper, Cu	mg/kg	0.5	11	13	23	13	16
Lead, Pb	mg/kg	1	19	17	29	22	19
Nickel, Ni	mg/kg	0.5	5.0	2.3	7.2	6.0	5.0
Zinc, Zn	mg/kg	0.5	19	16	48	55	32

			BH112_0.2-0.3	BH113_0.2-0.3	BH114_0.2-0.3	BH114_1.0-1.1	BH115_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 10/12/2015	- 10/12/2015	- 10/12/2015	- 10/12/2015	- 10/12/2015
PARAMETER	UOM	LOR	SE147094.018	SE147094.019	SE147094.020	SE147094.021	SE147094.022
Arsenic, As	mg/kg	3	8	12	5	10	7
Cadmium, Cd	mg/kg	0.3	0.5	0.5	0.5	0.3	0.3
Chromium, Cr	mg/kg	0.3	19	17	27	9.0	9.2
Copper, Cu	mg/kg	0.5	21	12	27	12	15
Lead, Pb	mg/kg	1	21	20	16	12	16
Nickel, Ni	mg/kg	0.5	20	6.7	30	1.2	3.1
Zinc, Zn	mg/kg	0.5	52	26	54	12	14

Total Recoverable Metals in Soil by ICPOES [AN040/AN320] Tested: 15/12/2015 (continued)

			BH115_0.5-0.6	BH116_0.2-0.3	BH117_0.0-0.1	BH117M_1.0-1.1	BH118_0.4-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 10/12/2015	- 10/12/2015	- 10/12/2015	- 10/12/2015	- 10/12/2015
PARAMETER	UOM	LOR	SE147094.023	SE147094.024	SE147094.025	SE147094.026	SE147094.028
Arsenic, As	mg/kg	3	7	5	3	8	11
Cadmium, Cd	mg/kg	0.3	0.4	0.6	0.7	0.6	0.6
Chromium, Cr	mg/kg	0.3	12	53	66	15	15
Copper, Cu	mg/kg	0.5	9.3	31	40	9.3	22
Lead, Pb	mg/kg	1	15	18	37	20	72
Nickel, Ni	mg/kg	0.5	1.1	26	50	5.8	11
Zinc, Zn	mg/kg	0.5	8.8	71	88	28	200

			BH119_0.0-0.1	QD-01	SP1-1	SP1-2
			SOIL	SOIL	SOIL	SOIL
			-	-	-	-
			10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.029	SE147094.030	SE147094.033	SE147094.034
Arsenic, As	mg/kg	3	6	8	10	6
Cadmium, Cd	mg/kg	0.3	0.6	0.6	0.8	0.5
Chromium, Cr	mg/kg	0.3	20	16	19	17
Copper, Cu	mg/kg	0.5	28	13	21	30
Lead, Pb	mg/kg	1	57	22	29	27
Nickel, Ni	mg/kg	0.5	25	7.1	18	30
Zinc, Zn	mg/kg	0.5	110	39	100	95

Mercury in Soil [AN312] Tested: 16/12/2015

			BH101_0.0-0.1	BH101_0.4-0.5	BH102_0.0-0.1	BH103_0.0-0.1	BH104M_0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.001	SE147094.002	SE147094.003	SE147094.004	SE147094.006
Mercury	mg/kg	0.01	0.04	<0.01	0.02	0.05	0.01

			BH105_0.0-0.1	BH106M_0.6-0.7	BH106M_0.9-1.0	BH107_0.2-0.3	BH108_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.007	SE147094.009	SE147094.010	SE147094.011	SE147094.012
Mercury	mg/kg	0.01	0.02	0.03	<0.01	0.02	0.02

			BH109_0.2-0.3	BH109_0.7-0.8	BH110_0.3-0.4	BH111_0.2-0.3	BH111_1.1-1.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.013	SE147094.014	SE147094.015	SE147094.016	SE147094.017
Mercury	mg/kg	0.01	0.01	0.02	0.02	<0.01	0.02

			BH112_0.2-0.3	BH113_0.2-0.3	BH114_0.2-0.3	BH114_1.0-1.1	BH115_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.018	SE147094.019	SE147094.020	SE147094.021	SE147094.022
Mercury	mg/kg	0.01	<0.01	0.02	0.01	0.01	0.01

			BH115_0.5-0.6	BH116_0.2-0.3	BH117_0.0-0.1	BH117M_1.0-1.1	BH118_0.4-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.023	SE147094.024	SE147094.025	SE147094.026	SE147094.028
Mercury	mg/kg	0.01	<0.01	<0.01	0.01	0.02	0.03

			BH119_0.0-0.1	QD-01	SP1-1	SP1-2
			SOIL	SOIL	SOIL	SOIL
						-
			10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.029	SE147094.030	SE147094.033	SE147094.034
Mercury	mg/kg	0.01	0.02	0.02	0.02	0.01

Moisture Content [AN002] Tested: 14/12/2015

			BH101_0.0-0.1	BH101_0.4-0.5	BH102_0.0-0.1	BH103_0.0-0.1	BH104M_0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.001	SE147094.002	SE147094.003	SE147094.004	SE147094.006
% Moisture	%w/w	0.5	11	18	15	16	15

			BH105_0.0-0.1	BH106M_0.6-0.7	BH106M_0.9-1.0	BH107_0.2-0.3	BH108_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.007	SE147094.009	SE147094.010	SE147094.011	SE147094.012
% Moisture	%w/w	0.5	18	22	20	17	16

			BH109_0.2-0.3	BH109_0.7-0.8	BH110_0.3-0.4	BH111_0.2-0.3	BH111_1.1-1.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.013	SE147094.014	SE147094.015	SE147094.016	SE147094.017
% Moisture	%w/w	0.5	19	24	17	11	25

			BH112_0.2-0.3	BH113_0.2-0.3	BH114_0.2-0.3	BH114_1.0-1.1	BH115_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.018	SE147094.019	SE147094.020	SE147094.021	SE147094.022
% Moisture	%w/w	0.5	18	21	18	21	21

			BH115_0.5-0.6	BH116_0.2-0.3	BH117_0.0-0.1	BH117M_1.0-1.1	BH118_0.4-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.023	SE147094.024	SE147094.025	SE147094.026	SE147094.028
% Moisture	%w/w	0.5	23	16	7.4	16	15

			BH119_0.0-0.1	QD-01	Trip Blank	SP1-1	SP1-2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.029	SE147094.030	SE147094.032	SE147094.033	SE147094.034
% Moisture	%w/w	0.5	9.5	15	<0.5	8.7	3.8

Fibre Identification in soil [AN602] Tested: 17/12/2015

			BH101_0.0-0.1	BH102_0.0-0.1	BH103_0.0-0.1	BH104M_0.0-0.1	BH105_0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.001	SE147094.003	SE147094.004	SE147094.005	SE147094.007
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH106M_0.2-0.3	BH107_0.2-0.3	BH108_0.2-0.3	BH109_0.2-0.3	BH110_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.008	SE147094.011	SE147094.012	SE147094.013	SE147094.015
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH111_0.2-0.3	BH112_0.2-0.3	BH113_0.2-0.3	BH114_0.2-0.3	BH115_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.016	SE147094.018	SE147094.019	SE147094.020	SE147094.022
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH116_0.2-0.3	BH117_0.0-0.1	BH118_0.0-0.1	BH119_0.0-0.1	SP1-1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/12/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094.024	SE147094.025	SE147094.027	SE147094.029	SE147094.033
Asbestos Detected	No unit	-	No	Yes	Yes	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	>0.01	<0.01	<0.01

			SP1-2
			SOIL
			- 10/12/2015
PARAMETER	UOM	LOR	SE147094.034
Asbestos Detected	No unit	-	No
Estimated Fibres*	%w/w	0.01	<0.01

VOCs in Water [AN433/AN434] Tested: 16/12/2015

			QR-01
			WATER
			- 10/12/2015
PARAMETER	UOM	LOR	SE147094.031
Benzene	µg/L	0.5	<0.5
Toluene	µg/L	0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5
m/p-xylene	µg/L	1	<1
o-xylene	µg/L	0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5
Total BTEX	µg/L	3	<3
Naphthalene	µg/L	0.5	<0.5

Volatile Petroleum Hydrocarbons in Water [AN433/AN434/AN410] Tested: 16/12/2015

			QR-01
			WATER
			- 10/12/2015
PARAMETER	UOM	LOR	SE147094.031
TRH C6-C9	µg/L	40	<40
Benzene (F0)	µg/L	0.5	<0.5
TRH C6-C10	µg/L	50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 14/12/2015

			QR-01
			WATER
			- 10/12/2015
PARAMETER	UOM	LOR	SE147094.031
TRH C10-C14	μg/L	50	<50
TRH C15-C28	μg/L	200	<200
TRH C29-C36	μg/L	200	<200
TRH C37-C40	µg/L	200	<200
TRH >C10-C16 (F2)	µg/L	60	<60
TRH >C16-C34 (F3)	µg/L	500	<500
TRH >C34-C40 (F4)	μg/L	500	<500
TRH C10-C36	µg/L	450	<450
TRH C10-C40	µg/L	650	<650

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 14/12/2015

			QR-01
			WATER
			10/12/2015
PARAMETER	UOM	LOR	SE147094.031
Arsenic, As	μg/L	1	<1
Cadmium, Cd	µg/L	0.1	<0.1
Chromium, Cr	µg/L	1	<1
Copper, Cu	µg/L	1	1
Lead, Pb	µg/L	1	<1
Nickel, Ni	µg/L	1	<1
Zinc, Zn	µg/L	5	<5

Mercury (dissolved) in Water [AN311/AN312] Tested: 17/12/2015

			QR-01
			WATER
			-
			10/12/2015
PARAMETER	UOM	LOR	SE147094.031
Mercury	mg/L	0.0001	<0.0001

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN311/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN400	OC and OP Pesticides by GC-ECD: The determination of organochlorine (OC) and organophosphorus (OP) pesticides and polychlorinated biphenyls (PCBs) in soils, sludges and groundwater. (Based on USEPA methods 3510, 3550, 8140 and 8080.)
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433/AN434/AN410	VOCs and C6-C9/C6-C10 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN433/AN434	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).

AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES -

 * NATA accreditation does not cover the performance of this service.
 ** Indicative data, theoretical holding time exceeded.

-NVL IS LNR

Not analysed. Not validated. Insufficient sample for analysis. Sample listed, but not received. UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Jessie Sixsmith	Manager	Huong Crawford
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9516 0722	Telephone	+61 2 8594 0400
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499
Email	Jessie.Sixsmith@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E22817 37-39 Pavesi St, Guildford West	SGS Reference	SE147094 R0
Order Number	E22817	Date Received	11 Dec 2015
Samples	21	Date Reported	18 Dec 2015

COMMENTS ·

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all samples using trace analysis technique.

Sample #5: A portion of the sample supplied has been sub-sampled for asbestos according to SGS In-house procedures. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Environmental Services recommends supplying approximately 50-100g of sample in a separate container.

Sample #25: 2-4mm length fibre bundles x4 found loose in sample. Sample #27: 2-8mm length fibre bundles found in 30x20x4mm cement sheet fragment.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES -

Ady Sitte

Andy Sutton Senior Organic Chemist

kinty

Ly Kim Ha Organic Section Head

Dong Liang Metals/Inorganics Team Leader

S. Ravender.

Agam.

Kamrul Ahsan Senior Chemist

Ravee Sivasubramaniam Asbestos Analyst/Hygiene Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278 Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia t +61 2 Australia

a t +61 2 8594 0400 f +61 2 8594 0499

Member of the SGS Group

www.sgs.com.au

ANALYTICAL REPORT

Fibre Identifica	ation in soil				Method AN602	
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	
SE147094.001	BH101_0.0-0.1	Soil	114g Clay, Soil, Rocks	10 Dec 2015	No Asbestos Found	<0.01
SE147094.003	BH102_0.0-0.1	Soil	220g Clay, Rocks	10 Dec 2015	No Asbestos Found	<0.01
SE147094.004	BH103_0.0-0.1	Soil	145g Clay, Soil, Rocks	10 Dec 2015	No Asbestos Found	<0.01
SE147094.005	BH104M_0.0-0.1	Soil	100g Clay, Soil, Rocks	10 Dec 2015	No Asbestos Found	<0.01
SE147094.007	BH105_0.0-0.1	Soil	127g Clay, Soil, Rocks	10 Dec 2015	No Asbestos Found	<0.01
SE147094.008	BH106M_0.2-0.3	Soil	110g Clay, Soil, Rocks	10 Dec 2015	No Asbestos Found	<0.01
SE147094.011	BH107_0.2-0.3	Soil	191g Clay, Soil, Rocks	10 Dec 2015	No Asbestos Found	<0.01
SE147094.012	BH108_0.2-0.3	Soil	133g Clay, Soil, Rocks	10 Dec 2015	No Asbestos Found	<0.01
SE147094.013	BH109_0.2-0.3	Soil	208g Clay, Rocks	10 Dec 2015	No Asbestos Found	<0.01
SE147094.015	BH110_0.3-0.4	Soil	187g Clay, Soil, Rocks	10 Dec 2015	No Asbestos Found	<0.01
SE147094.016	BH111_0.2-0.3	Soil	144g Clay, Sand, Soil, Rocks	10 Dec 2015	No Asbestos Found	<0.01
SE147094.018	BH112_0.2-0.3	Soil	175g Clay, Soil, Rocks	10 Dec 2015	No Asbestos Found	<0.01
SE147094.019	BH113_0.2-0.3	Soil	128g Clay, Soil, Rocks	10 Dec 2015	No Asbestos Found	<0.01
SE147094.020	BH114_0.2-0.3	Soil	215g Clay, Soil, Rocks	10 Dec 2015	No Asbestos Found	<0.01
SE147094.022	BH115_0.2-0.3	Soil	149g Clay, Sand, Soil, Rocks	10 Dec 2015	No Asbestos Found	<0.01
SE147094.024	BH116_0.2-0.3	Soil	127g Clay, Soil, Rocks	10 Dec 2015	No Asbestos Found	<0.01
SE147094.025	BH117_0.0-0.1	Soil	136g Clay, Soil, Rocks	10 Dec 2015	Chrysotile Asbestos Found	<0.01
SE147094.027	BH118_0.0-0.1	Soil	154g Clay, Soil, Rocks	10 Dec 2015	Chrysotile Asbestos Found	>0.01
SE147094.029	BH119_0.0-0.1	Soil	122g Clay, Soil, Rock	10 Dec 2015	No Asbestos Found	<0.01
SE147094.033	SP1-1	Soil	158g Clay, Soil, Rocks	10 Dec 2015	No Asbestos Found Organic Fibres Detected	<0.01
SE147094.034	SP1-2	Soil	170g Clay, Soil, Rocks	10 Dec 2015	No Asbestos Found Organic Fibres Detected	<0.01

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES

Amosite Chrvsotile	-	Brown Asbestos White Asbestos	NA LNR	-	Not Analysed Listed, Not Required
Crocidolite Amphiboles	-	Blue Asbestos Amosite and/or Crocidolite	* **	-	NATA accreditation does not cover the performance of this service . Indicative data, theoretical holding time exceeded.

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Sampled by the client.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS	
Contact	Jessie Sixsmith	Manager	Huong Crawford	
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental	
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 9516 0722	Telephone	+61 2 8594 0400	
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499	
Email	Jessie.Sixsmith@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E22817 37-39 Pavesi St Guildford - Add	SGS Reference	SE147094A R0	
Order Number	E22817	Date Received	21/12/2015	
Samples	36	Date Reported	30/12/2015	

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all samples using trace analysis technique.

Sample #26, 36: A portion of the sample supplied has been sub-sampled for asbestos according to SGS In-house procedures. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Environmental Services recommends supplying approximately 50-100g of sample in a separate container.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES -

Ady Sith

Andy Sutton Senior Organic Chemist

kinty

Ly Kim Ha Organic Section Head

Yusuf Kuthpudin Asbestos Analyst

SGS Australia Pty Ltd ABN 44 000 964 278 Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f

00 **f** +61 2 8594 0499

www.sgs.com.au

Volatile Petroleum Hydrocarbons in Soil [AN433/AN434/AN410] Tested: 21/12/2015

			BH114_1.6-1.7
			SOIL
			- 10/12/2015
PARAMETER	UOM	LOR	SE147094A.035
TRH C6-C9	mg/kg	20	<20
Benzene (F0)	mg/kg	0.1	<0.1
TRH C6-C10	mg/kg	25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 21/12/2015

			BH114_1.6-1.7 SOIL - 10/12/2015
PARAMETER	UOM	LOR	SE147094A.035
TRH C10-C14	mg/kg	20	63
TRH C15-C28	mg/kg	45	100
TRH C29-C36	mg/kg	45	<45
TRH C37-C40	mg/kg	100	<100
TRH >C10-C16 (F2)	mg/kg	25	98
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	98
TRH >C16-C34 (F3)	mg/kg	90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120
TRH C10-C36 Total	mg/kg	110	170
TRH C10-C40 Total	mg/kg	210	<210

Fibre Identification in soil [AN602] Tested: 29/12/2015

			BH117M_1.0-1.1	BH118_1.0-1.1
			SOIL	SOIL
			10/12/2015	10/12/2015
PARAMETER	UOM	LOR	SE147094A.026	SE147094A.036
Asbestos Detected	No unit	-	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01

Moisture Content [AN002] Tested: 22/12/2015

			BH114_1.6-1.7
			SOIL
			- 10/12/2015
PARAMETER	UOM	LOR	SE147094A.035
% Moisture	%w/w	0.5	13

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN433/AN434/AN410	VOCs and C6-C9/C6-C10 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic 'clues', which provide a reasonable degree of certainty, dispersion staining is a mandatory 'clue' for positive identification. If sufficient 'clues' are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES -

 * NATA accreditation does not cover the performance of this service.
 ** Indicative data, theoretical holding time exceeded.

-NVL IS LNR

Not analysed. Not validated. Insufficient sample for analysis. Sample listed, but not received. UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Jessie Sixsmith	Manager	Huong Crawford
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9516 0722	Telephone	+61 2 8594 0400
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499
Email	Jessie.Sixsmith@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E22817 37-39 Pavesi St Guildford - Add	SGS Reference	SE147094A R0
Order Number	E22817	Date Received	21 Dec 2015
Samples	2	Date Reported	30 Dec 2015

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all samples using trace analysis technique.

Sample #26, 36: A portion of the sample supplied has been sub-sampled for asbestos according to SGS In-house procedures. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Environmental Services recommends supplying approximately 50-100g of sample in a separate container.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES -

Ady Sitte

Andy Sutton Senior Organic Chemist

kinty

Ly Kim Ha **Organic Section Head**

C

Yusuf Kuthpudin Asbestos Analyst

SGS Australia Pty Ltd ABN 44 000 964 278

Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia

f +61 2 8594 0499

Member of the SGS Group

www.sgs.com.au

ANALYTICAL REPORT

RESULTS					Μ	ethod	AN602	
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification			
SE147094A.026	BH117M_1.0-1.1	Soil	148g Clay, Rocks	10 Dec 2015	No Asbestos Found			<0.01
SE147094A.036	BH118_1.0-1.1	Soil	100g Clay, Soil, Rocks	10 Dec 2015	No Asbestos Found			<0.01

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples , Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES

Amosite Chrysotile	-	Brown Asbestos White Asbestos	NA LNR	-	Not Analysed Listed, Not Required
Crocidolite Amphiboles	-	Blue Asbestos Amosite and/or Crocidolite	*	-	NATA accreditation does not cover the performance of this service . Indicative data, theoretical holding time exceeded.

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Sampled by the client.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS

139015

Client: Environmental Investigations

Suite 6.01, 55 Miller Street Pyrmont NSW 2009

Attention: Jessie Sixsmith

Sample log in details:

Your Reference:	E22817, Guildford West		West
No. of samples:	2 Soils		
Date samples received / completed instructions received	11/12/15	/	11/12/15

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 18/12/15
 /
 18/12/15

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Laboratory Manager

Client Reference: E22817, Guildford West

vTRH(C6-C10)/BTEXN in Soil		
Our Reference:	UNITS	139015-1
Your Reference		QT-01
Date Sampled		10/12/2015
Type of sample		Soil
Date extracted	-	14/12/2015
Date analysed	-	14/12/2015
TRHC6 - C9	mg/kg	<25
TRHC6 - C10	mg/kg	<25
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	101

Client Reference:

E22817, Guildford West

svTRH (C10-C40) in Soil		
Our Reference:	UNITS	139015-1
Your Reference		QT-01
Date Sampled		10/12/2015
Type of sample		Soil
Date extracted	-	14/12/2015
Date analysed	-	15/12/2015
TRHC 10 - C 14	mg/kg	<50
TRHC 15 - C28	mg/kg	<100
TRHC29 - C36	mg/kg	<100
TRH>C 10-C 16	mg/kg	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH>C16-C34	mg/kg	<100
TRH>C34-C40	mg/kg	<100
Surrogate o-Terphenyl	%	88

Client Reference:

E22817, Guildford West

PAHs in Soil		
Our Reference:	UNITS	139015-1
Your Reference		QT-01
Date Sampled		10/12/2015
Type of sample		Soil
Date extracted	-	14/12/2015
Date analysed	-	14/12/2015
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Total Positive PAHs	mg/kg	NIL(+)VE
Surrogate p-Terphenyl-d14	%	95

Client Reference:

E22817, Guildford West

Acid Extractable metals in soil		
Our Reference:	UNITS	139015-1
Your Reference		QT-01
Date Sampled		10/12/2015
Type of sample		Soil
Date prepared	-	14/12/2015
Date analysed	-	14/12/2015
Arsenic	mg/kg	7
Cadmium	mg/kg	<0.4
Chromium	mg/kg	22
Copper	mg/kg	16
Lead	mg/kg	19
Mercury	mg/kg	<0.1
Nickel	mg/kg	8
Zinc	mg/kg	35

Client Reference: E22817, Guildford West

Moisture		
Our Reference:	UNITS	139015-1
Your Reference		QT-01
Date Sampled		10/12/2015
Type of sample		Soil
Date prepared	-	14/12/2015
Date analysed	-	15/12/2015
Moisture	%	14

Client Reference: E22817, Guildford West

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:-
	1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" td="" teq="" teqs="" that="" the="" this="" to=""></pql>
	2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>
	3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql are="" half="" pql.<br="" stipulated="" the="">Hence a mid-point between the most and least conservative approaches above.</pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Iford West Duplicate results	Spike Sm#	Spike %
vTRH(C6-C10)/BTEXNin					Sm#	Base II Duplicate II % RPD		Recovery
Soil								
Date extracted	-			14/12/2 015	[NT]	[NT]	LCS-3	14/12/2015
Date analysed	-			14/12/2 015	[NT]	[NT]	LCS-3	14/12/2015
TRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-3	110%
TRHC6 - C10	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-3	110%
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-3	95%
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-3	108%
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-3	113%
m+p-xylene	mg/kg	2	Org-016	~2	[NT]	[NT]	LCS-3	118%
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-3	105%
naphthalene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Surrogate aaa-	%		Org-016	97	[NT]	[NT]	LCS-3	110%
Trifluorotoluene	70		olgoro	01	[]	[]	200 0	11070
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil						Base II Duplicate II % RPD		
Date extracted	-			14/12/2 015	[NT]	[NT]	LCS-3	14/12/2015
Date analysed	-			14/12/2 015	[NT]	[NT]	LCS-3	14/12/2015
TRHC 10 - C14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-3	89%
TRHC 15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	77%
TRHC29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	60%
TRH>C10-C16	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-3	89%
TRH>C16-C34	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	77%
TRH>C34-C40	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	60%
Surrogate o-Terphenyl	%		Org-003	91	[NT]	[NT]	LCS-3	115%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#			Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Date extracted	-			14/12/2 015	[NT]	[NT]	LCS-3	14/12/2015
Date analysed	-			14/12/2 015	[NT]	[NT]	LCS-3	14/12/2015
Naphthalene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-3	116%
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-3	115%
Phenanthrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-3	100%
Anthracene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-3	102%
Pyrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-3	109%
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-3	128%
Benzo(b,j+k) fluoranthene	mg/kg	0.2	Org-012 Org-012	<0.1	[NT]	[NT]	[NR]	[NR]

	Client Reference: E22817, Guildford West										
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
PAHs in Soil						Base II Duplicate II % RPD					
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	[NT]	[NT]	LCS-3	118%			
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]			
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]			
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]			
<i>Surrogate p</i> -Terphenyl- d14	%		Org-012	94	[NT]	[NT]	LCS-3	137%			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %			
Acid Extractable metals in soil					Sm#	Base II Duplicate II % RPD		Recovery			
Date prepared	-			14/12/2 015	[NT]	[NT]	LCS-12	14/12/2015			
Date analysed	-			14/12/2 015	[NT]	[NT]	LCS-12	14/12/2015			
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	[NT]	[NT]	LCS-12	112%			
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	[NT]	[NT]	LCS-12	105%			
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-12	108%			
Copper	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-12	114%			
Lead	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-12	105%			
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]	[NT]	LCS-12	81%			
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-12	102%			
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-12	104%			

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

ANALYTICAL REPORT

CLIENT DETAILS	3	LABORATORY DE	LABORATORY DETAILS					
Contact	Jessie Sixsmith	Manager	Huong Crawford					
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental					
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015					
Telephone	02 9516 0722	Telephone	+61 2 8594 0400					
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499					
Email	Jessie.Sixsmith@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com					
Project	E22817 - Pavesi Street Guildford West	SGS Reference	SE147250 R0					
Order Number	E22817	Date Received	16/12/2015					
Samples	6	Date Reported	23/12/2015					

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES -

Ady Sitte

Andy Sutton Senior Organic Chemist

Kent M

Ly Kim Ha Organic Section Head

Dongto

Dong Liang Metals/Inorganics Team Leader

Kamrul Ahsan Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

5 Australia 5 Australia t +61 2 8594 0400

f +61 2 8594 0499

www.sgs.com.au

SE147250 R0

VOCs in Water [AN433/AN434] Tested: 18/12/2015

			BH104M	BH106M	BH117M	GWQD-1	QR-2
			WATER	WATER	WATER	WATER	WATER
			-	-		-	-
PARAMETER	UOM	LOR	15/12/2015 SE147250.001	15/12/2015 SE147250.002	15/12/2015 SE147250.003	15/12/2015 SE147250.004	15/12/2015 SE147250.005
Benzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
m/p-xylene	μg/L	1	<1	<1	<1	<1	<1
o-xylene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Xylenes	μg/L	1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Total BTEX	µg/L	3	<3	<3	<3	<3	<3
Naphthalene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane (CFC-12)	µg/L	5	<5	<5	<5	-	-
Chloromethane	μg/L	5	<5	<5	<5	-	-
Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3	<0.3	<0.3	-	-
Bromomethane	μg/L	10	<10	<10	<10	_	-
Chloroethane	μg/L	5	<5	<5	<5	_	-
Trichlorofluoromethane	µg/L	1	<1	<1	<1	-	-
Acetone (2-propanone)	µg/L	10	<10	<10	<10	-	-
lodomethane	µg/L	5	<5	<5	<5	-	-
1,1-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Acrylonitrile	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Dichloromethane (Methylene chloride)	µg/L	5	<5	<5	<5	-	-
Allyl chloride	µg/L	2	<2	<2	<2	-	-
Carbon disulfide	µg/L	2	<2	<2	<2	-	-
trans-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	_	-
MtBE (Methyl-tert-butyl ether)	µg/L	2	<2	<2	<2	-	-
1,1-dichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Vinyl acetate	μg/L	10	<10	<10	<10		-
MEK (2-butanone)	μg/L	10	<10	<10	<10		-
cis-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5		-
Bromochloromethane	μg/L	0.5	<0.5	<0.5	<0.5		-
Chloroform (THM)	μg/L	0.5	<0.5	<0.5	<0.5	-	-
2,2-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5		
1,2-dichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	_	
1,1,1-trichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5		
Carbon tetrachloride	μg/L	0.5	<0.5	<0.5	<0.5		-
Dibromomethane	μg/L	0.5	<0.5	<0.5	<0.5	_	-
1,2-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	<0.5	<0.5	<0.5	_	-
2-nitropropane	μg/L	100	<100	<100	<100	-	-
Bromodichloromethane (THM)	μg/L	0.5	<0.5	<0.5	<0.5	-	-
MIBK (4-methyl-2-pentanone)	μg/L	5	<5	<5	<5	-	-
cis-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	_	-
trans-1,3-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,2-trichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	_	-
1,3-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Dibromochloromethane (THM)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
2-hexanone (MBK)	μg/L	5	<5	<5	<5	-	-
1,2-dibromoethane (EDB)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Chlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	_	-
Bromoform (THM)	μg/L	0.5	<0.5	<0.5	<0.5	-	-
cis-1,4-dichloro-2-butene	μg/L	1	<1	<1	<1	_	-
Styrene (Vinyl benzene)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,2,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,3-trichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
trans-1,4-dichloro-2-butene		1	<1	<1	<1	-	-
	µg/L	I	-1			-	-

SE147250 R0

VOCs in Water [AN433/AN434] Tested: 18/12/2015 (continued)

			BH104M	BH106M	BH117M	GWQD-1	QR-2
			WATER	WATER	WATER	WATER	WATER
			15/12/2015	15/12/2015	15/12/2015	15/12/2015	15/12/2015
PARAMETER	UOM	LOR	SE147250.001	SE147250.002	SE147250.003	SE147250.004	SE147250.005
Isopropylbenzene (Cumene)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Bromobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
n-propylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
2-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
4-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3,5-trimethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
tert-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,4-trimethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
sec-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,4-dichlorobenzene	µg/L	0.3	<0.3	<0.3	<0.3	-	-
p-isopropyltoluene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
n-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,4-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Hexachlorobutadiene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,3-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Total VOC	µg/L	10	-	-	-	-	-

SE147250 R0

VOCs in Water [AN433/AN434] Tested: 18/12/2015 (continued)

			Trip Spike
			WATER
			-
			15/12/2015
PARAMETER Benzene	UOM μg/L	LOR 0.5	SE147250.006 [101%]
Toluene	μg/L	0.5	[100%]
Ethylbenzene	μg/L	0.5	[97%]
m/p-xylene	μg/L	1	[97%]
o-xylene	μg/L	0.5	[99%]
Total Xylenes	μg/L	1.5	-
Total BTEX		3	
	μg/L		-
Naphthalene	µg/L	0.5	-
Dichlorodifluoromethane (CFC-12)	µg/L	5	
Chloromethane	µg/L	5	-
Vinyl chloride (Chloroethene)	µg/L	0.3	-
Bromomethane	µg/L	10	-
Chloroethane	µg/L	5	-
Trichlorofluoromethane	µg/L	1	-
Acetone (2-propanone)	µg/L	10	-
lodomethane	µg/L	5	-
1,1-dichloroethene	µg/L	0.5	-
Acrylonitrile	µg/L	0.5	-
Dichloromethane (Methylene chloride)	µg/L	5	-
Allyl chloride	µg/L	2	-
Carbon disulfide	µg/L	2	-
trans-1,2-dichloroethene	μg/L	0.5	-
MtBE (Methyl-tert-butyl ether)	μg/L	2	-
1,1-dichloroethane	µg/L	0.5	-
Vinyl acetate	µg/L	10	-
MEK (2-butanone)	µg/L	10	-
cis-1,2-dichloroethene	µg/L	0.5	-
Bromochloromethane	µg/L	0.5	-
Chloroform (THM)	µg/L	0.5	-
2,2-dichloropropane	µg/L	0.5	-
1,2-dichloroethane	µg/L	0.5	-
1,1,1-trichloroethane	µg/L	0.5	-
1,1-dichloropropene	µg/L	0.5	-
Carbon tetrachloride	µg/L	0.5	-
Dibromomethane	µg/L	0.5	-
1,2-dichloropropane	μg/L	0.5	_
Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	-
2-nitropropane	μg/L	100	-
Bromodichloromethane (THM)	μg/L	0.5	-
MIBK (4-methyl-2-pentanone)	μg/L	5	_
cis-1,3-dichloropropene	μg/L	0.5	
trans-1,3-dichloropropene	μg/L μg/L	0.5	-
			-
1,1,2-trichloroethane	μg/L	0.5	-
1,3-dichloropropane	μg/L	0.5	
Dibromochloromethane (THM)	μg/L	0.5	-
2-hexanone (MBK)	µg/L	5	
1,2-dibromoethane (EDB)	µg/L	0.5	-
Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	-
1,1,1,2-tetrachloroethane	µg/L	0.5	-
Chlorobenzene	µg/L	0.5	-
Bromoform (THM)	µg/L	0.5	-
cis-1,4-dichloro-2-butene	µg/L	1	-
Styrene (Vinyl benzene)	µg/L	0.5	-
1,1,2,2-tetrachloroethane	µg/L	0.5	-
1,2,3-trichloropropane	µg/L	0.5	-
trans-1,4-dichloro-2-butene	μg/L	1	-

SE147250 R0

VOCs in Water [AN433/AN434] Tested: 18/12/2015 (continued)

			Trip Spike
			WATER
			- 15/12/2015
PARAMETER	UOM	LOR	SE147250.006
Isopropylbenzene (Cumene)	µg/L	0.5	-
Bromobenzene	µg/L	0.5	-
n-propylbenzene	μg/L	0.5	-
2-chlorotoluene	μg/L	0.5	-
4-chlorotoluene	μg/L	0.5	-
1,3,5-trimethylbenzene	µg/L	0.5	-
tert-butylbenzene	μg/L	0.5	-
1,2,4-trimethylbenzene	μg/L	0.5	-
sec-butylbenzene	μg/L	0.5	-
1,3-dichlorobenzene	μg/L	0.5	-
1,4-dichlorobenzene	μg/L	0.3	-
p-isopropyltoluene	µg/L	0.5	-
1,2-dichlorobenzene	μg/L	0.5	-
n-butylbenzene	µg/L	0.5	-
1,2-dibromo-3-chloropropane	µg/L	0.5	-
1,2,4-trichlorobenzene	µg/L	0.5	-
Hexachlorobutadiene	µg/L	0.5	-
1,2,3-trichlorobenzene	µg/L	0.5	-
Total VOC	µg/L	10	-

Volatile Petroleum Hydrocarbons in Water [AN433/AN434/AN410] Tested: 18/12/2015

			BH104M	BH106M	BH117M	GWQD-1	QR-2
			WATER	WATER	WATER	WATER	WATER
			- 15/12/2015	- 15/12/2015	- 15/12/2015	- 15/12/2015	- 15/12/2015
PARAMETER	UOM	LOR	SE147250.001	SE147250.002	SE147250.003	SE147250.004	SE147250.005
TRH C6-C9	µg/L	40	<40	<40	<40	<40	<40
Benzene (F0)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
TRH C6-C10	µg/L	50	<50	<50	<50	<50	<50
TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	<50	<50	<50	<50

ANALYTICAL RESULTS

SE147250 R0

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 17/12/2015

			BH104M	BH106M	BH117M	GWQD-1	QR-2
			WATER	WATER	WATER	WATER	WATER
			15/12/2015	15/12/2015	15/12/2015	15/12/2015	15/12/2015
PARAMETER	UOM	LOR	SE147250.001	SE147250.002	SE147250.003	SE147250.004	SE147250.005
TRH C10-C14	µg/L	50	<50	<50	<50	<50	<50
TRH C15-C28	µg/L	200	<200	<200	<200	<200	<200
TRH C29-C36	µg/L	200	<200	<200	<200	<200	<200
TRH C37-C40	µg/L	200	<200	<200	<200	<200	<200
TRH >C10-C16 (F2)	µg/L	60	<60	<60	<60	<60	<60
TRH >C16-C34 (F3)	µg/L	500	<500	<500	<500	<500	<500
TRH >C34-C40 (F4)	µg/L	500	<500	<500	<500	<500	<500
TRH C10-C36	µg/L	450	<450	<450	<450	<450	<450
TRH C10-C40	µg/L	650	<650	<650	<650	<650	<650

ANALYTICAL RESULTS

PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420] Tested: 17/12/2015

			BH104M	BH106M	BH117M
			WATER	WATER	WATER
			15/12/2015	15/12/2015	15/12/2015
PARAMETER	UOM	LOR	SE147250.001	SE147250.002	SE147250.003
Naphthalene	µg/L	0.1	<0.1	<0.1	0.1
2-methylnaphthalene	µg/L	0.1	<0.1	<0.1	0.1
1-methylnaphthalene	µg/L	0.1	<0.1	<0.1	0.1
Acenaphthylene	μg/L	0.1	<0.1	<0.1	<0.1
Acenaphthene	µg/L	0.1	<0.1	<0.1	<0.1
Fluorene	μg/L	0.1	<0.1	<0.1	<0.1
Phenanthrene	µg/L	0.1	<0.1	<0.1	<0.1
Anthracene	μg/L	0.1	<0.1	<0.1	<0.1
Fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1
Pyrene	μg/L	0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	μg/L	0.1	<0.1	<0.1	<0.1
Chrysene	μg/L	0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	µg/L	0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1	<0.1	<0.1
Dibenzo(a&h)anthracene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	µg/L	0.1	<0.1	<0.1	<0.1
Total PAH (18)	µg/L	1	<1	<1	<1

ANALYTICAL RESULTS

SE147250 R0

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 18/12/2015

			BH104M	BH106M	BH117M	GWQD-1	QR-2
			WATER	WATER	WATER	WATER	WATER
			- 15/12/2015	- 15/12/2015	- 15/12/2015	- 15/12/2015	- 15/12/2015
PARAMETER	UOM	LOR	SE147250.001	SE147250.002	SE147250.003	SE147250.004	SE147250.005
Arsenic, As	µg/L	1	<1	4	3	<1	<1
Cadmium, Cd	µg/L	0.1	1.9	0.1	0.2	1.8	<0.1
Chromium, Cr	µg/L	1	<1	<1	<1	<1	<1
Copper, Cu	µg/L	1	10	9	3	6	<1
Lead, Pb	µg/L	1	<1	<1	<1	<1	<1
Nickel, Ni	µg/L	1	160	39	16	150	<1
Zinc, Zn	µg/L	5	2600	140	180	2600	<5

SE147250 R0

Mercury (dissolved) in Water [AN311/AN312] Tested: 22/12/2015

			BH104M	BH106M	BH117M	GWQD-1	QR-2
			WATER	WATER	WATER	WATER	WATER
							-
			15/12/2015	15/12/2015	15/12/2015	15/12/2015	15/12/2015
PARAMETER	UOM	LOR	SE147250.001	SE147250.002	SE147250.003	SE147250.004	SE147250.005
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001

METHOD	METHODOLOGY SUMMARY
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN311/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is not corrected for Naphthalene.
AN403	Additionally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433/AN434/AN410	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN433/AN434	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES -

 * NATA accreditation does not cover the performance of this service.
 ** Indicative data, theoretical holding time exceeded. -NVL IS LNR

Not analysed. Not validated. Insufficient sample for analysis. Sample listed, but not received. UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS

139287

Client: Environmental Investigations

Suite 6.01, 55 Miller Street Pyrmont NSW 2009

Attention: Jessie Sixsmith

Sample log in details:

Your Reference:	E22817, Guildford West				
No. of samples:	1 Water				
Date samples received / completed instructions received	17/12/15	/	17/12/15		

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 4/01/16
 / 22/12/15

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Laboratory Manager

vTRH(C6-C10)/BTEXN in Water				
Our Reference:	UNITS	139287-1		
Your Reference		GWQT-1		
	-			
Date Sampled		15/12/15		
Type of sample		Water		
Date extracted	-	17/12/2015		
Date analysed	-	18/12/2015		
TRHC6 - C9	µg/L	<10		
TRHC6 - C10	µg/L	<10		
TRHC6 - C10 less BTEX (F1)	µg/L	<10		
Benzene	µg/L	<1		
Toluene	µg/L	<1		
Ethylbenzene	µg/L	<1		
m+p-xylene	µg/L	<2		
o-xylene	µg/L	<1		
Naphthalene	µg/L	<1		
Surrogate Dibromofluoromethane	%	105		
Surrogate toluene-d8	%	100		
Surrogate 4-BFB	%	94		

svTRH (C10-C40) in Water		
Our Reference:	UNITS	139287-1
Your Reference		GWQT-1
	-	
Date Sampled		15/12/15
Type of sample		Water
Date extracted	-	17/12/2015
Date analysed	-	18/12/2015
TRHC 10 - C14	µg/L	<50
TRHC 15 - C28	µg/L	<100
TRHC29 - C36	µg/L	<100
TRH>C10 - C16	µg/L	<50
TRH>C10 - C16 less Naphthalene (F2)	µg/L	<50
TRH>C16 - C34	µg/L	<100
TRH>C34 - C40	µg/L	<100
Surrogate o-Terphenyl	%	80

HM in water - dissolved		
Our Reference:	UNITS	139287-1
Your Reference		GWQT-1
	-	
Date Sampled		15/12/15
Type of sample		Water
Date prepared	-	18/12/2015
Date analysed	-	18/12/2015
Arsenic-Dissolved	µg/L	<1
Cadmium-Dissolved	µg/L	1.9
Chromium-Dissolved	µg/L	<1
Copper-Dissolved	µg/L	8
Lead-Dissolved	µg/L	<1
Mercury-Dissolved	µg/L	<0.05
Nickel-Dissolved	µg/L	150
Zinc-Dissolved	µg/L	2,000

Client Reference: E22817, Guildford West

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
vTRH(C6-C10)/BTEXNin Water					Sm#	Base II Duplicate II % RPD		Recovery
Date extracted	_			17/12/2	[NT]	[NT]	LCS-W3	17/12/2015
Bate onliablea				015	[]	[]	200 110	11/12/2010
Date analysed	-			18/12/2 015	[NT]	[NT]	LCS-W3	18/12/2015
TRHC6 - C9	µg/L	10	Org-016	<10	[NT]	[NT]	LCS-W3	99%
TRHC6 - C10	µg/L	10	Org-016	<10	[NT]	[NT]	LCS-W3	99%
Benzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W3	96%
Toluene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W3	99%
Ethylbenzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W3	100%
m+p-xylene	µg/L	2	Org-016	~2	[NT]	[NT]	LCS-W3	101%
o-xylene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W3	102%
Naphthalene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Surrogate	~9- %		Org-016	103	[NT]	[NT]	LCS-W3	101%
Dibromofluoromethane			eng ene		[]	[···]		
Surrogate toluene-d8	%		Org-016	100	[NT]	[NT]	LCS-W3	100%
Surrogate 4-BFB	%		Org-016	95	[NT]	[NT]	LCS-W3	107%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Water						Base II Duplicate II % RPD		
Date extracted	-			18/12/2	[NT]	[NT]	LCS-W1	18/12/2015
Date analysed	-			015 18/12/2 015	[NT]	[NT]	LCS-W1	18/12/2015
TRHC 10 - C 14	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	103%
TRHC 15 - C28	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	79%
TRHC 29 - C36	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	73%
TRH>C10 - C16	μg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	103%
TRH>C16 - C34	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	79%
TRH>C34 - C40	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	73%
	μg/L %	100		85			LCS-W1	106%
Surrogate o-Terphenyl		PQL	Org-003		[NT]	[NT]		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
HM in water - dissolved						Base II Duplicate II % RPD		
Date prepared	-			18/12/2 015	[NT]	[NT]	LCS-W1	18/12/2015
Date analysed	-			18/12/2 015	[NT]	[NT]	LCS-W1	18/12/2015
Arsenic-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	99%
Cadmium-Dissolved	µg/L	0.1	Metals-022 ICP-MS	<0.1	[NT]	[NT]	LCS-W1	103%
Chromium-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	93%
Copper-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	96%
Lead-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	103%

Client Reference: E22817, Guildford West											
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
HM in water - dissolved						Base II Duplicate II % RPD					
Mercury-Dissolved	µg/L	0.05	Metals-021 CV-AAS	<0.05	[NT]	[NT]	LCS-W1	96%			
Nickel-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	98%			
Zinc-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	98%			

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

APPENDIX G QA/QC Assessment

G1 QUALITY CONTROL PROGRAM

G1.1 INTRODUCTION

For the purpose of assessing the quality of data presented in this Remediation and Validation report, El collected field QC samples for analysis. The primary laboratory, SGS Australia Pty Ltd (SGS) and secondary laboratory, Envirolab Services Pty Ltd (Envirolab) also prepared and analysed QC samples. Details of the field and laboratory QC samples are provided, with the allowable acceptance ranges for the data presented in Table G-1.

Data Quality Objective	Data Quality Indicator	Acceptable Range
Accuracy	Field – Trip blank (laboratory prepared)	< laboratory limit of reporting (LOR)
	Laboratory – Laboratory control spike and matrix spike	Prescribed by the laboratories
Precision	Field – Blind replicate and spilt duplicate	< 30 % relative percentage
	Laboratory – Laboratory duplicate and matrix spike duplicate	difference (RPD [%])
	5 5 1 1 1	Prescribed by the laboratories
Representativeness	Field – Trip blank (laboratory prepared)	< laboratory limit of reporting (LOR)
	Laboratory – Method blank	Prescribed by the laboratories
Completeness	Completion (%)	-

Table G-1 Sampling Data Quality Indicators

G1.2 CALCULATION OF RELATIVE PERCENTAGE DIFFERENCE (RPD)

The RPD values were calculated using the following equation:

$$RPD = \frac{([C_0 - C_R] \times 100)}{(C_0 + C_R)}$$

 C_{O} = Concentration obtained from the primary sample.

 C_R = Concentration obtained from the blind replicate or split sample.

G2 FIELD QA/QC DATA EVALUATION

The field quality assurance/quality control (QA/QC) soil samples collected during the Remediation and Validation works were as follows:

- Blind field duplicate;
- Inter laboratory duplicates;
- Trip blanks; and
- Rinsate Blank.

The results of the QA/QC samples collected during the investigation and validation phases of sampling, including the calculated RPD values between primary and duplicate samples, are presented in Table G-2.

G2.1 SOIL INVESTIGATION & SOIL VALIDATION

G2.1.1 Blind Field Duplicate

One (1) blind field duplicate (BFD) sample was collected for each sampling event. The preparation of the BFD sample involved the collection of a bulk quantity of soil from the same sampling point without mixing, before dividing the material into identical sampling vessels. The duplicate sample was then presented blind to the primary laboratory (SGS) to avoid any potential analytical bias. The BFD was analysed for TPH, BTEX, selected heavy metals with the RPD values calculated found to be within the Data Acceptance Criteria.

G2.1.2 Inter Laboratory Duplicate

One (1) inter laboratory duplicate (ILD) sample was collected for each sampling event. The preparation of the ILD sample was identical to the BFD sample as described above and analysed for TPH, BTEX and selected heavy metals. The RPD values calculated for the ILD sample was found to be within the Data Acceptance Criteria, with the exception of Mercury (133.33%) for soil investigation sample QT-01 due to small variations in concentrations being reported.

Furthermore, soil samples were placed immediately into jars following sampling to reduce the loss of volatiles from samples. Results of soil sampling indicated that the samples collected were representative of the soils present at respective sampling locations; therefore, EI conclude that the samples collected are representative of the soils present at the respective sampling locations.

G2.1.3 Trip Blank

One (1) trip blank (TB) sample, prepared by the primary laboratory, was analysed for BTEX by the primary laboratory. The soil TB sample results were reported below the laboratory LOR, indicating that ideal sample transport and handling conditions were achieved.

Table G-2Summary of QA/QC results for soil investigation samples

	_		T	RH			B	ΤΕΧ					Heavy	Metals			
Sample identification	Description	F1*	F2**	F3 (>06- C34)	F4 (>C4- C4)	Benzene	Toluene	Ethybenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Tote	Copper	Lead	Mercury	Nickel	Zinc
Intra-laboratory Duplicate - Soil Investigation																	
BH102_0.0-0.1	Fill	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	7	0.5	18	16	20	0.02	7.5	45
QD-01	BFD of BH102_0.0-0.1	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	8	0.6	16	13	22	0.02	7.1	39
F	RPD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	13.33	18.18	11.76	20.69	9.52	0.00	5.48	14.29
Inter-laboratory Duplic	ate - Soil Investigation																
BH102_0.0-0.1	Fill	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	7	0.5	18	16	20	0.02	7.5	45
QT-01	ILD of BH102_0.0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<2	7	<0.4	22	16	19	<0.1	8	35
F	RPD	0.00	NA	NA	NA	NA	NA	NA	NA	0.00	22.22	20.00	0.00	5.13	133.33	6.45	25.00
Rinsate Blanks																	
QR-01	De-ionised water	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.1	<1	1	<1	< 0.0001	<1	<5
NOTE: All results are repo	orted in mg/kg (soil) or µg/L (v	vater)															
66.67	RPD calculated by halving of			0	erenced from <i>i</i>	AS4482.1 (20	05)										
52.87	52.87 RPD exceeds 30-50% range referenced from AS4482.1 (2005)																

G2.1.4 Rinsate Blank

One (1) rinsate blank (RB) sample per sampling event was submitted to the primary laboratory for TPH, BTEX and selected heavy metals. The RB sample results were reported below the laboratory LOR, therefore it was concluded that decontamination procedures performed during the field works had been effective.

G2.2 GROUNDWATER INVESTIGATION

The field quality assurance/quality control (QA/QC) groundwater samples collected during the data gap closure works were as follows:

- Blind field duplicate;
- Inter laboratory duplicates;
- Trip blanks; and
- Rinsate Blank.

The results of the QA/QC samples collected during the supplementary groundwater investigation, including the calculated RPD values between primary and duplicate samples, are presented in Table G-4.

G2.2.1 Blind Field Duplicate

One (1) blind field duplicate (BFD) sample, being sample GWQD-01, was collected from the primary sample BH104M. The preparation of the BFD sample involved the involved the decanting of the groundwater collected from the respective groundwater monitoring well into two separate groups of appropriately labelled sampling containers. Volumes were split equally between the groups of sampling bottles such that the sample contained in each individual bottle, contained a similar proportion of each water volume. It should be noted that the sample was not mixed prior to decanting, in order to preserve the concentrations of volatiles potentially present within the sample. The duplicate sample was then presented blind to the primary laboratory (SGS) to avoid any potential analytical bias. The BFD was analysed for TPH, BTEX and selected heavy metals. The RPD values calculated for the majority of the analytes tested were found to be within the Data Acceptance Criteria (DAC).

G2.2.2 Inter-Laboratory Duplicate

One (1) inter laboratory duplicate (ILD) sample, being sample GWI-2, was collected from the primary sample GW5-1. The preparation of the ILD sample was identical to the BFD sample as described above and analysed for TPH, BTEX and selected heavy metals. The RPD values calculated for the ILD sample were found to be within the Data Acceptance Criteria.

G2.2.3 Assessment of Field QA/QC Data

All groundwater samples were field tested and assessed on any observable signs of contamination based on visual and odour assessment.

All samples, including field QC samples, were transported to the primary and secondary laboratories under strict Chain-of-Custody conditions and appropriate copies of relevant documentation were included in the respective reports.

The overall completeness of documentation produced under the field program of the subject assessment was considered to be adequate for the purposes of drawing valid conclusions regarding the environmental condition of the site.

Based on the results of the field QA/QC data, EI considered the field QA/QC programme carried out during the remediation and validation works to be appropriate and the results to be acceptable.

Table G-4Summary of QA/QC results for groundwater samples

<u>د</u>	_		TT	RH			BT	ΈX				-	Heavy	Metals	-		
Sample identification	Description	F1*	F2**	F3 (>06- C4)	F4 (>G4- C40)	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Tota	Copper	Lead	Mercury	Nickel	Zinc
Intra-labora	tory Duplicate - Grou	undwater Inv	estigation											-			
BH104M	Groundwater	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	1.9	<1	10	<1	<0.1	160	2600
GWQD-01	BFD of BH104M	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	1.8	<1	6	<1	<0.1	150	2600
	RPD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.41	0.00	50.00	0.00	0.00	6.45	0.00
Inter-labora	tory Duplicate - Grou	undwater Inv	vestigation														
BH104M	Groundwater	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	1.9	<1	10	<1	<0.1	160	2600
GWQT-01	ILD of BH104M	<10	<50	<100	<100	<1	<1	<1	<1	<1	1.9	<1	8	<1	<0.05	150	2000
	RPD	NA	NA	NA	NA	NA	NA	NA	NA	0.00	0.00	0.00	22.22	0.00	NA	6.45	26.09
NOTE: All res	NOTE: All results are reported in mg/kg (soil) or µg/L (water)																
	RPD calculated by hal					from AS4482	.1 (2005)										
66.67	RPD exceeds 30-50%	6 range refere	enced from AS	4482.1 (2005	5)												

G3 LABORATORY QA/QC

G3.1 LABORATORY ACCREDITATION

To undertake all analytical testing, EI commissioned SGS as the primary laboratory and Envirolab as the secondary laboratory. SGS and Envirolab, both established analytical laboratories which operate in accordance with the guidelines set out in ISO/IEC Guide 25 "General requirements for the competence of calibration and testing laboratories", conducted all respective analyses using National Association Testing Authorities (NATA)-registered procedures.

In relation to contingencies, should the pre-determined DQOs not be achieved, in accordance with each laboratory's QC policy, respective tests are accordingly repeated. Should the results again fall outside the DQOs, then sample heterogeneity may be assumed and written comment will be provided to this effect on the final laboratory certificate.

G3.2 SAMPLE HOLDING TIMES

All sample holding times were generally within standard environmental protocols as tabulated in Appendix H, Tables QC1 and QC2.

G3.3 TEST METHODS AND PRACTICAL QUANTITATION LIMITS (PQLS)

Practical Quantitation Limits for the tested parameters during the assessments of soils are presented in Appendix H, Tables QC3 and QC4.

G3.4 METHOD BLANKS

Concentrations of all parameters in method blanks during the assessment were below the laboratory PQLs and were therefore within the DAC.

G3.5 LABORATORY DUPLICATE SAMPLES

The Laboratory Control Samples (LCS) for the analysis batches were within acceptable ranges and conformed to the DAC, with the exception of Chromium for SE147094.018 due to sample heterogeneity.

G3.6 LABORATORY CONTROL SAMPLES

The Laboratory Control Samples (LCS) for the analysis batches were within acceptable ranges and conformed to the DAC.

G3.7 MATRIX SPIKES

The matrix spikes of the analysis batches were within acceptable ranges and conformed to the DAC, with the exception of samples SE147082.020 whose recovery in Mercury exceeded the acceptance criteria due to matrix interference, SE147082.020 for Chromium, lead and nickel due to matrix interference, SE147094A.03 for TRH C10-C14, C15-C28, >C10-C16 (F2) and >C16-C34 (F3) due to matrix interference and SE147247.001 for Arsenic due to matrix interference.

APPENDIX H Laboratory QA/AC Policies and DQOs

STATEMENT OF QA/QC PERFORMANCE

_ CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Jessie Sixsmith	Manager	Huong Crawford
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9516 0722	Telephone	+61 2 8594 0400
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499
Email	Jessie.Sixsmith@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E22817 37-39 Pavesi St, Guildford West	SGS Reference	SE147094 R0
Order Number	E22817	Date Received	11 Dec 2015
Samples	34	Date Reported	18 Dec 2015

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS Environmental Services' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Duplicate	Total Recoverable Metals in Soil by ICPOES	1 item
Matrix Spike	Mercury in Soil	1 item
	Total Recoverable Metals in Soil by ICPOES	3 items

Sample counts by r Date documentatio Samples received of Sample container p Samples received i Sample cooling me Complete documer	n received without headspace provider n correct containers thod	33 Soils, 1 Water 11/12/2015 Yes SGS Yes Ice Bricks Yes	Type of documenta Samples received Sample temperatu Turnaround time re Sufficient sample f Samples clearly la	in good orde re upon rece equested or analysis	er	COC Yes 11.6°C Standard Yes Yes	
SGS Australia Pty Ltd	Environmental Services	Unit 16 33 Maddox St	Alexandria NSW 2015	Australia	t +61 2 8594 0400	f +61 2 8594 0499	www.sgs.com.au

SGS Australia Pty Ltd ABN 44 000 964 278

Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia Australia

Member of the SGS Group

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Fibre Identification in soil

Fibre Identification in soil	bre Identification in soil Method: ME-(AU)-[ENV]AN602									
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
BH101_0.0-0.1	SE147094.001	LB092021	10 Dec 2015	11 Dec 2015	09 Dec 2016	17 Dec 2015	09 Dec 2016	18 Dec 2015		
BH102_0.0-0.1	SE147094.003	LB092021	10 Dec 2015	11 Dec 2015	09 Dec 2016	17 Dec 2015	09 Dec 2016	18 Dec 2015		
BH103_0.0-0.1	SE147094.004	LB092021	10 Dec 2015	11 Dec 2015	09 Dec 2016	17 Dec 2015	09 Dec 2016	18 Dec 2015		
BH104M_0.0-0.1	SE147094.005	LB092021	10 Dec 2015	11 Dec 2015	09 Dec 2016	17 Dec 2015	09 Dec 2016	18 Dec 2015		
BH105_0.0-0.1	SE147094.007	LB092021	10 Dec 2015	11 Dec 2015	09 Dec 2016	17 Dec 2015	09 Dec 2016	18 Dec 2015		
BH106M_0.2-0.3	SE147094.008	LB092021	10 Dec 2015	11 Dec 2015	09 Dec 2016	17 Dec 2015	09 Dec 2016	18 Dec 2015		
BH107_0.2-0.3	SE147094.011	LB092021	10 Dec 2015	11 Dec 2015	09 Dec 2016	17 Dec 2015	09 Dec 2016	18 Dec 2015		
BH108_0.2-0.3	SE147094.012	LB092021	10 Dec 2015	11 Dec 2015	09 Dec 2016	17 Dec 2015	09 Dec 2016	18 Dec 2015		
BH109_0.2-0.3	SE147094.013	LB092021	10 Dec 2015	11 Dec 2015	09 Dec 2016	17 Dec 2015	09 Dec 2016	18 Dec 2015		
BH110_0.3-0.4	SE147094.015	LB092021	10 Dec 2015	11 Dec 2015	09 Dec 2016	17 Dec 2015	09 Dec 2016	18 Dec 2015		
BH111_0.2-0.3	SE147094.016	LB092021	10 Dec 2015	11 Dec 2015	09 Dec 2016	17 Dec 2015	09 Dec 2016	18 Dec 2015		
BH112_0.2-0.3	SE147094.018	LB092021	10 Dec 2015	11 Dec 2015	09 Dec 2016	17 Dec 2015	09 Dec 2016	18 Dec 2015		
BH113_0.2-0.3	SE147094.019	LB092021	10 Dec 2015	11 Dec 2015	09 Dec 2016	17 Dec 2015	09 Dec 2016	18 Dec 2015		
BH114_0.2-0.3	SE147094.020	LB092021	10 Dec 2015	11 Dec 2015	09 Dec 2016	17 Dec 2015	09 Dec 2016	18 Dec 2015		
BH115_0.2-0.3	SE147094.022	LB092021	10 Dec 2015	11 Dec 2015	09 Dec 2016	17 Dec 2015	09 Dec 2016	18 Dec 2015		
BH116_0.2-0.3	SE147094.024	LB092021	10 Dec 2015	11 Dec 2015	09 Dec 2016	17 Dec 2015	09 Dec 2016	18 Dec 2015		
BH117_0.0-0.1	SE147094.025	LB092021	10 Dec 2015	11 Dec 2015	09 Dec 2016	17 Dec 2015	09 Dec 2016	18 Dec 2015		
BH118_0.0-0.1	SE147094.027	LB092021	10 Dec 2015	11 Dec 2015	09 Dec 2016	17 Dec 2015	09 Dec 2016	18 Dec 2015		
BH119_0.0-0.1	SE147094.029	LB092021	10 Dec 2015	11 Dec 2015	09 Dec 2016	17 Dec 2015	09 Dec 2016	18 Dec 2015		
SP1-1	SE147094.033	LB092021	10 Dec 2015	11 Dec 2015	09 Dec 2016	17 Dec 2015	09 Dec 2016	18 Dec 2015		
SP1-2	SE147094.034	LB092021	10 Dec 2015	11 Dec 2015	09 Dec 2016	17 Dec 2015	09 Dec 2016	18 Dec 2015		

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR-01	SE147094.031	LB091971	10 Dec 2015	11 Dec 2015	07 Jan 2016	17 Dec 2015	07 Jan 2016	17 Dec 2015

Mercury in Soil

fercury in Soil							Method: I	/IE-(AU)-[ENV]AN3
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.0-0.1	SE147094.001	LB091900	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
BH101_0.4-0.5	SE147094.002	LB091900	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
BH102_0.0-0.1	SE147094.003	LB091900	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
BH103_0.0-0.1	SE147094.004	LB091900	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
BH104M_0.4-0.5	SE147094.006	LB091900	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
BH105_0.0-0.1	SE147094.007	LB091900	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
BH106M_0.6-0.7	SE147094.009	LB091900	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
BH106M_0.9-1.0	SE147094.010	LB091900	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
BH107_0.2-0.3	SE147094.011	LB091900	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
BH108_0.2-0.3	SE147094.012	LB091900	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
BH109_0.2-0.3	SE147094.013	LB091900	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
BH109_0.7-0.8	SE147094.014	LB091900	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
BH110_0.3-0.4	SE147094.015	LB091900	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
BH111_0.2-0.3	SE147094.016	LB091900	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
BH111_1.1-1.2	SE147094.017	LB091900	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
BH112_0.2-0.3	SE147094.018	LB091900	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
BH113_0.2-0.3	SE147094.019	LB091901	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
BH114_0.2-0.3	SE147094.020	LB091901	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
BH114_1.0-1.1	SE147094.021	LB091901	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
BH115_0.2-0.3	SE147094.022	LB091901	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
BH115_0.5-0.6	SE147094.023	LB091901	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
BH116_0.2-0.3	SE147094.024	LB091901	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
BH117_0.0-0.1	SE147094.025	LB091901	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
BH117M_1.0-1.1	SE147094.026	LB091901	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
BH118_0.4-0.8	SE147094.028	LB091901	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
BH119_0.0-0.1	SE147094.029	LB091901	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
QD-01	SE147094.030	LB091901	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
SP1-1	SE147094.033	LB091901	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015
SP1-2	SE147094.034	LB091901	10 Dec 2015	11 Dec 2015	07 Jan 2016	16 Dec 2015	07 Jan 2016	17 Dec 2015

18/12/2015

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Moisture Content (continued)

Moisture Content (continue	· ·		Compled	Dessived	Extraction Dec	Evitive etc.d	Analysis Due	ME-(AU)-[ENV]AI
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	,	Analysed
BH101_0.0-0.1	SE147094.001	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
BH101_0.4-0.5	SE147094.002	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
BH102_0.0-0.1	SE147094.003	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
BH103_0.0-0.1	SE147094.004	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
BH104M_0.4-0.5	SE147094.006	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
BH105_0.0-0.1	SE147094.007	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
BH106M_0.6-0.7	SE147094.009	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
BH106M_0.9-1.0	SE147094.010	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
BH107_0.2-0.3	SE147094.011	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
BH108_0.2-0.3	SE147094.012	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
BH109_0.2-0.3	SE147094.013	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
BH109_0.7-0.8	SE147094.014	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
3H110_0.3-0.4	SE147094.015	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
3H111_0.2-0.3	SE147094.016	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
3H111_1.1-1.2	SE147094.017	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
3H112_0.2-0.3	SE147094.018	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
3H113_0.2-0.3	SE147094.019	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
3H114_0.2-0.3	SE147094.020	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
3H114_1.0-1.1	SE147094.021	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
3H115_0.2-0.3	SE147094.022	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
	SE147094.023	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
3H116_0.2-0.3	SE147094.024	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
3H117_0.0-0.1	SE147094.025	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
BH117M_1.0-1.1	SE147094.026	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
3H118 0.4-0.8	SE147094.028	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
3H119_0.0-0.1	SE147094.020	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
QD-01	SE147094.030	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
Frip Blank	SE147094.030	LB091691	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	19 Dec 2015	15 Dec 2015
-								
SP1-1 SP1-2	SE147094.033 SE147094.034	LB091691 LB091691	10 Dec 2015 10 Dec 2015	11 Dec 2015 11 Dec 2015	24 Dec 2015 24 Dec 2015	14 Dec 2015 14 Dec 2015	19 Dec 2015 19 Dec 2015	15 Dec 2015 15 Dec 2015
5P1-2	SE147094.034	LD091091	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015		
C Pesticides in Soil							Method: ME-(AU)-[ENV]AN400/A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H101_0.0-0.1	SE147094.001	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
3H101_0.4-0.5	SE147094.002	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
3H102_0.0-0.1	SE147094.003	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
3H103_0.0-0.1	SE147094.004	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
3H104M_0.4-0.5	SE147094.006	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
	SE147094.007	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
3H106M 0.6-0.7	SE147094.009	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH106M_0.9-1.0	SE147094.010	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
3H107_0.2-0.3	SE147094.011	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH108_0.2-0.3	SE147094.012	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
3H109_0.2-0.3	SE147094.012	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH109_0.2-0.3	SE147094.013	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
_								
BH110_0.3-0.4	SE147094.015	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
3H111_0.2-0.3	SE147094.016	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
3H111_1.1-1.2	SE147094.017	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH112_0.2-0.3	SE147094.018	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
3H113_0.2-0.3	SE147094.019	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
3H114_0.2-0.3	SE147094.020	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
3H114_1.0-1.1	SE147094.021	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH115 0 2 0 3	SE147004 022	I B091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	19 Dog 2015

11 Dec 2015

24 Dec 2015

14 Dec 2015

BH115_0.2-0.3

BH115 0.5-0.6

BH116_0.2-0.3

BH117 0.0-0.1

BH117M 1.0-1.1

BH118_0.4-0.8

BH119 0.0-0.1

QD-01

SE147094.022

SE147094.023

SE147094.024

SE147094.025

SE147094.026

SE147094.028

SE147094.029

SE147094.030

LB091730

LB091732

LB091732

LB091732

LB091732

LB091732

LB091732

LB091732

10 Dec 2015

18 Dec 2015

23 Jan 2016

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

OC Pesticides in Soil (conti	inued)						Method: ME-(AU)-[ENV]AN400/AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
SP1-1	SE147094.033	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
SP1-2	SE147094.034	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
OP Pesticides in Soil							Method: ME-(AU)-[ENV]AN400/AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.0-0.1	SE147094.001	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH101_0.4-0.5	SE147094.002	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH102_0.0-0.1	SE147094.003	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH103_0.0-0.1	SE147094.004	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH104M_0.4-0.5	SE147094.006	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH105_0.0-0.1	SE147094.007	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH106M_0.6-0.7	SE147094.009	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH106M_0.9-1.0	SE147094.010	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH107_0.2-0.3	SE147094.011	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH108_0.2-0.3	SE147094.012	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH109_0.2-0.3	SE147094.013	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH109_0.7-0.8	SE147094.014	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH110_0.3-0.4	SE147094.015	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH111_0.2-0.3	SE147094.016	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH111_1.1-1.2	SE147094.017	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH112_0.2-0.3	SE147094.018	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH113_0.2-0.3	SE147094.019	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH114_0.2-0.3	SE147094.020	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH114_1.0-1.1	SE147094.021	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH115_0.2-0.3	SE147094.022	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH115_0.5-0.6	SE147094.023	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH116_0.2-0.3	SE147094.024	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
BH117_0.0-0.1	SE147094.025	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
BH117M_1.0-1.1	SE147094.026	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH118_0.4-0.8	SE147094.028	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
BH119_0.0-0.1	SE147094.029	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
QD-01	SE147094.030	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
SP1-1	SE147094.033	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
SP1-2	SE147094.034	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
AH (Polynuclear Aromatic	Hydrocarbons) in Soil						Method: I	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.0-0.1	SE147094.001	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH101_0.4-0.5	SE147094.002	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH102_0.0-0.1	SE147094.003	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
 BH103_0.0-0.1	SE147094.004	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
-	SE147094.006							

11 Dec 2015

24 Dec 2015

14 Dec 2015

23 Jan 2016

SE147094.007

SE147094.009

SE147094.010

SE147094.011

SE147094.012

SE147094.013

SE147094.014

SE147094.015

SE147094.016

SE147094.017

SE147094.018

SE147094.019

SE147094.020

SE147094.021

SE147094.022

SE147094.023

SE147094.024

SE147094.025

SE147094.026

LB091730

LB091732

LB091732

LB091732

LB091732

10 Dec 2015

BH105_0.0-0.1

BH106M 0.6-0.7

BH106M 0.9-1.0

BH107_0.2-0.3

BH108_0.2-0.3

BH109 0.2-0.3

BH109_0.7-0.8

BH110 0.3-0.4

BH111_0.2-0.3

BH111_1.1-1.2

BH112 0.2-0.3

BH113_0.2-0.3

BH114_0.2-0.3

BH114_1.0-1.1

BH115_0.2-0.3

BH115 0.5-0.6

BH116_0.2-0.3

BH117_0.0-0.1

BH117M 1.0-1.1

17 Dec 2015

16 Dec 2015

16 Dec 2015

16 Dec 2015

16 Dec 2015

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

DAH (Bolynuclear Aromatic Hydrocarbone) in Soil (continued)

PAH (Polynuclear Aroma	tic Hydrocarbons) in Soil (co	ontinued)					Method: I	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH118_0.4-0.8	SE147094.028	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
BH119_0.0-0.1	SE147094.029	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
QD-01	SE147094.030	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
SP1-1	SE147094.033	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
SP1-2	SE147094.034	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
PCBs in Soil							Method: ME-(AU)-[ENV]AN400/AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.0-0.1	SE147094.001	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH101_0.4-0.5	SE147094.002	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH102_0.0-0.1	SE147094.003	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH103_0.0-0.1	SE147094.004	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH104M_0.4-0.5	SE147094.006	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH105_0.0-0.1	SE147094.007	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH106M_0.6-0.7	SE147094.009	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH106M_0.9-1.0	SE147094.010	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH107_0.2-0.3	SE147094.011	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH108_0.2-0.3	SE147094.012	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH109_0.2-0.3	SE147094.013	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
3H109_0.7-0.8	SE147094.014	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH110_0.3-0.4	SE147094.015	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH111_0.2-0.3	SE147094.016	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
3H111_1.1-1.2	SE147094.017	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH112_0.2-0.3	SE147094.018	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH113_0.2-0.3	SE147094.019	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH114_0.2-0.3	SE147094.020	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH114_1.0-1.1	SE147094.021	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH115_0.2-0.3	SE147094.022	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH115_0.5-0.6	SE147094.023	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH116_0.2-0.3	SE147094.024	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH117_0.0-0.1	SE147094.025	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH117M_1.0-1.1	SE147094.026	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH118_0.4-0.8	SE147094.028	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
BH119_0.0-0.1	SE147094.029	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015
QD-01	SE147094.030	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015

Total Recoverable Metals in Soil by ICPOES

SE147094.033

SE147094.034

LB091732

LB091732

10 Dec 2015

10 Dec 2015

SP1-1

SP1-2

Method: ME-(AU)-[ENV]AN040/AN320

18 Dec 2015

18 Dec 2015

23 Jan 2016

23 Jan 2016

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.0-0.1	SE147094.001	LB091836	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015
BH101_0.4-0.5	SE147094.002	LB091836	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015
BH102_0.0-0.1	SE147094.003	LB091836	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015
BH103_0.0-0.1	SE147094.004	LB091836	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015
BH104M_0.4-0.5	SE147094.006	LB091836	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015
BH105_0.0-0.1	SE147094.007	LB091836	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015
BH106M_0.6-0.7	SE147094.009	LB091836	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015
BH106M_0.9-1.0	SE147094.010	LB091836	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015
BH107_0.2-0.3	SE147094.011	LB091836	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015
BH108_0.2-0.3	SE147094.012	LB091836	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015
BH109_0.2-0.3	SE147094.013	LB091836	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015
BH109_0.7-0.8	SE147094.014	LB091836	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015
BH110_0.3-0.4	SE147094.015	LB091836	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015
BH111_0.2-0.3	SE147094.016	LB091836	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015
BH111_1.1-1.2	SE147094.017	LB091836	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015
BH112_0.2-0.3	SE147094.018	LB091836	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015
BH113_0.2-0.3	SE147094.019	LB091837	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015
BH114_0.2-0.3	SE147094.020	LB091837	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015
BH114_1.0-1.1	SE147094.021	LB091837	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015
BH115_0.2-0.3	SE147094.022	LB091837	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015
BH115_0.5-0.6	SE147094.023	LB091837	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015

11 Dec 2015

11 Dec 2015

24 Dec 2015

24 Dec 2015

14 Dec 2015

14 Dec 2015

Method: ME-(AU)-[ENV]AN403

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Total Recoverable Metals in Soil by ICPOES (continued)

Total Recoverable Metals	Total Recoverable Metals in Soil by ICPOES (continued) Method: ME-(AU)-[ENV]AN040/AN32											
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed				
BH116_0.2-0.3	SE147094.024	LB091837	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015				
BH117_0.0-0.1	SE147094.025	LB091837	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015				
BH117M_1.0-1.1	SE147094.026	LB091837	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015				
BH118_0.4-0.8	SE147094.028	LB091837	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015				
BH119_0.0-0.1	SE147094.029	LB091837	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015				
QD-01	SE147094.030	LB091837	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015				
SP1-1	SE147094.033	LB091837	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015				
SP1-2	SE147094.034	LB091837	10 Dec 2015	11 Dec 2015	07 Jun 2016	15 Dec 2015	07 Jun 2016	17 Dec 2015				
Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN3'												

Trace Metals (Dissolved) in Water by ICPMS

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR-01	SE147094.031	LB091699	10 Dec 2015	11 Dec 2015	07 Jun 2016	14 Dec 2015	07 Jun 2016	15 Dec 2015

TRH (Total Recoverable Hydrocarbons) in Soil

Intra (Total Recoverable I	iyurocarbons) in oon						Weblou.	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.0-0.1	SE147094.001	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH101_0.4-0.5	SE147094.002	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH102_0.0-0.1	SE147094.003	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH103_0.0-0.1	SE147094.004	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH104M_0.4-0.5	SE147094.006	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH105_0.0-0.1	SE147094.007	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH106M_0.6-0.7	SE147094.009	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH106M_0.9-1.0	SE147094.010	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH107_0.2-0.3	SE147094.011	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH108_0.2-0.3	SE147094.012	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH109_0.2-0.3	SE147094.013	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH109_0.7-0.8	SE147094.014	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH110_0.3-0.4	SE147094.015	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH111_0.2-0.3	SE147094.016	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH111_1.1-1.2	SE147094.017	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH112_0.2-0.3	SE147094.018	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH113_0.2-0.3	SE147094.019	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH114_0.2-0.3	SE147094.020	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH114_1.0-1.1	SE147094.021	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH115_0.2-0.3	SE147094.022	LB091730	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	17 Dec 2015
BH115_0.5-0.6	SE147094.023	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
BH116_0.2-0.3	SE147094.024	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
BH117_0.0-0.1	SE147094.025	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
BH117M_1.0-1.1	SE147094.026	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
BH118_0.4-0.8	SE147094.028	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
BH119_0.0-0.1	SE147094.029	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
QD-01	SE147094.030	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
SP1-1	SE147094.033	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
SP1-2	SE147094.034	LB091732	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
RH (Total Recoverable I	Hydrocarbons) in Water						Method:	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR-01	SE147094.031	LB091733	10 Dec 2015	11 Dec 2015	17 Dec 2015	14 Dec 2015	23 Jan 2016	18 Dec 2015

Method: ME-(AU)-IENVIAN433/AN434

							moulod. ME (10	/ Letter attroom attro
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.0-0.1	SE147094.001	LB091692	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	15 Dec 2015
BH101_0.4-0.5	SE147094.002	LB091692	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	15 Dec 2015
BH102_0.0-0.1	SE147094.003	LB091692	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	15 Dec 2015
BH103_0.0-0.1	SE147094.004	LB091692	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	15 Dec 2015
BH104M_0.4-0.5	SE147094.006	LB091692	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	15 Dec 2015
BH105_0.0-0.1	SE147094.007	LB091692	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	15 Dec 2015
BH106M_0.6-0.7	SE147094.009	LB091692	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	15 Dec 2015
BH106M_0.9-1.0	SE147094.010	LB091692	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	15 Dec 2015
BH107_0.2-0.3	SE147094.011	LB091692	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	15 Dec 2015

VOC's in Soil

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

VOC's in Soil (continued)

VOC's in Soil (continued)							Method: ME-(AU)-[ENV]AN433/AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH108_0.2-0.3	SE147094.012	LB091692	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	15 Dec 2015
BH109_0.2-0.3	SE147094.013	LB091692	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	15 Dec 2015
BH109_0.7-0.8	SE147094.014	LB091692	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	15 Dec 2015
BH110_0.3-0.4	SE147094.015	LB091692	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	15 Dec 2015
BH111_0.2-0.3	SE147094.016	LB091692	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	15 Dec 2015
BH111_1.1-1.2	SE147094.017	LB091692	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	15 Dec 2015
BH112_0.2-0.3	SE147094.018	LB091692	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	15 Dec 2015
BH113_0.2-0.3	SE147094.019	LB091692	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	15 Dec 2015
BH114_0.2-0.3	SE147094.020	LB091692	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	15 Dec 2015
BH114_1.0-1.1	SE147094.021	LB091692	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	15 Dec 2015
BH115_0.2-0.3	SE147094.022	LB091693	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
BH115_0.5-0.6	SE147094.023	LB091693	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
BH116_0.2-0.3	SE147094.024	LB091693	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
BH117_0.0-0.1	SE147094.025	LB091693	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
BH117M_1.0-1.1	SE147094.026	LB091693	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
BH118_0.4-0.8	SE147094.028	LB091693	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
BH119_0.0-0.1	SE147094.029	LB091693	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
QD-01	SE147094.030	LB091693	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
Trip Blank	SE147094.032	LB091693	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
SP1-1	SE147094.033	LB091693	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
SP1-2	SE147094.034	LB091693	10 Dec 2015	11 Dec 2015	24 Dec 2015	14 Dec 2015	23 Jan 2016	16 Dec 2015
/OCs in Water							Method: ME-(AU)-[ENV]AN433/AN4

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR-01	SE147094.031	LB091916	10 Dec 2015	11 Dec 2015	17 Dec 2015	16 Dec 2015	25 Jan 2016	17 Dec 2015

Method: ME-(AU)-[ENV]AN433/AN434/AN410 Volatile Petroleum Hydrocarbons in Soil Sample Name Sample No. QC Ref Received Extraction Due Extracted Analysis Due Analysed Sampled BH101 0 0-0 1 SE147094 001 I B091692 10 Dec 2015 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 15 Dec 2015 BH101_0.4-0.5 SE147094.002 LB091692 10 Dec 2015 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 15 Dec 2015 BH102 0.0-0.1 SE147094.003 LB091692 10 Dec 2015 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 15 Dec 2015 BH103_0.0-0.1 SE147094.004 LB091692 10 Dec 2015 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 15 Dec 2015 BH104M_0.4-0.5 SE147094.006 LB091692 10 Dec 2015 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 15 Dec 2015 BH105 0.0-0.1 SE147094.007 LB091692 10 Dec 2015 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 15 Dec 2015 BH106M_0.6-0.7 SE147094.009 LB091692 10 Dec 2015 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 15 Dec 2015 BH106M 0.9-1.0 SE147094.010 LB091692 10 Dec 2015 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 15 Dec 2015 BH107 0.2-0.3 SE147094.011 LB091692 10 Dec 2015 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 15 Dec 2015 BH108_0.2-0.3 SE147094.012 LB091692 10 Dec 2015 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 15 Dec 2015 BH109 0.2-0.3 SE147094.013 LB091692 10 Dec 2015 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 15 Dec 2015 BH109_0.7-0.8 SE147094.014 LB091692 10 Dec 2015 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 15 Dec 2015 BH110_0.3-0.4 SE147094.015 LB091692 10 Dec 2015 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 15 Dec 2015 BH111 0.2-0.3 SE147094.016 LB091692 10 Dec 2015 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 15 Dec 2015 BH111_1.1-1.2 SE147094.017 LB091692 10 Dec 2015 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 15 Dec 2015 BH112 0.2-0.3 SE147094.018 LB091692 10 Dec 2015 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 15 Dec 2015 BH113_0.2-0.3 SE147094.019 LB091692 10 Dec 2015 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 15 Dec 2015 BH114_0.2-0.3 SE147094.020 LB091692 10 Dec 2015 11 Dec 2015 24 Dec 2015 23 Jan 2016 15 Dec 2015 14 Dec 2015 BH114 1.0-1.1 SE147094.021 LB091692 10 Dec 2015 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 15 Dec 2015 BH115_0.2-0.3 SE147094.022 LB091693 10 Dec 2015 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 16 Dec 2015 BH115 0.5-0.6 SE147094.023 LB091693 10 Dec 2015 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 16 Dec 2015 10 Dec 2015 BH116_0.2-0.3 SE147094.024 LB091693 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 16 Dec 2015 23 Jan 2016 BH117_0.0-0.1 SE147094.025 LB091693 10 Dec 2015 11 Dec 2015 24 Dec 2015 14 Dec 2015 16 Dec 2015 BH117M 1.0-1.1 SE147094.026 LB091693 10 Dec 2015 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 16 Dec 2015 BH118_0.4-0.8 SE147094.028 LB091693 10 Dec 2015 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 16 Dec 2015 BH119_0.0-0.1 SE147094.029 LB091693 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 16 Dec 2015 10 Dec 2015 QD-01 SE147094.030 LB091693 10 Dec 2015 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 16 Dec 2015 Trip Blank SE147094.032 LB091693 10 Dec 2015 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 17 Dec 2015 SP1-1 SE147094.033 LB091693 10 Dec 2015 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 16 Dec 2015 SP1-2 SE147094.034 LB091693 10 Dec 2015 11 Dec 2015 24 Dec 2015 14 Dec 2015 23 Jan 2016 16 Dec 2015

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Volatile Petroleum Hydrocar	bons in Water						Method: ME-(AU)-[ENV]	AN433/AN434/AN410
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR-01	SE147094.031	LB091916	10 Dec 2015	11 Dec 2015	17 Dec 2015	16 Dec 2015	25 Jan 2016	17 Dec 2015

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

C Pesticides in Soil				Method: ME-(AU)-	[ENV]AN400/A
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH101_0.0-0.1	SE147094.001	%	60 - 130%	109
, , , , , , ,	BH102_0.0-0.1	SE147094.003	%	60 - 130%	101
	BH103_0.0-0.1	SE147094.004	%	60 - 130%	106
	BH104M_0.4-0.5	SE147094.006	%	60 - 130%	96
	BH105_0.0-0.1	SE147094.007	%	60 - 130%	113
	BH106M_0.6-0.7	SE147094.009	%	60 - 130%	100
	BH107_0.2-0.3	SE147094.011	%	60 - 130%	106
	BH107_0.2-0.3	SE147094.012	%	60 - 130%	100
	BH109_0.2-0.3	SE147094.013	%	60 - 130%	98
	BH110_0.3-0.4	SE147094.015	%	60 - 130%	109
	BH111_0.2-0.3	SE147094.016	%	60 - 130%	103
	BH112_0.2-0.3	SE147094.018	%	60 - 130%	106
	BH113_0.2-0.3	SE147094.019	%	60 - 130%	93
	BH114_0.2-0.3	SE147094.020	%	60 - 130%	115
	BH115_0.2-0.3	SE147094.022	%	60 - 130%	99
	BH116_0.2-0.3	SE147094.024	%	60 - 130%	102
	BH117_0.0-0.1	SE147094.025	%	60 - 130%	108
	BH118_0.4-0.8	SE147094.028	%	60 - 130%	108
	BH119_0.0-0.1	SE147094.029	%	60 - 130%	100
	SP1-1	SE147094.033	%	60 - 130%	97
	SP1-2	SE147094.034	%	60 - 130%	102
Pesticides in Soil				Method: ME-(AU)-	
irameter	Sample Name	Sample Number	Units	Criteria	Recover
fluorobiphenyl (Surrogate)	BH101_0.0-0.1	SE147094.001	%	60 - 130%	80
	BH102_0.0-0.1	SE147094.003	%	60 - 130%	76
	BH103_0.0-0.1	SE147094.004	%	60 - 130%	86
	BH104M_0.4-0.5	SE147094.006	%	60 - 130%	82
	BH105_0.0-0.1	SE147094.007	%	60 - 130%	86
	BH106M_0.6-0.7	SE147094.009	%	60 - 130%	88
	BH107_0.2-0.3	SE147094.011	%	60 - 130%	82
	BH108_0.2-0.3	SE147094.012	%	60 - 130%	78
	BH109_0.2-0.3	SE147094.013	%	60 - 130%	80
	BH110_0.3-0.4	SE147094.015	%	60 - 130%	86
	BH111_0.2-0.3	SE147094.016	%	60 - 130%	78
	BH112_0.2-0.3	SE147094.018	%	60 - 130%	80
	BH113_0.2-0.3	SE147094.019	%	60 - 130%	84
	BH114_0.2-0.3	SE147094.020	%	60 - 130%	84
	BH115_0.2-0.3	SE147094.022	%	60 - 130%	80
	BH116_0.2-0.3	SE147094.022	%	60 - 130%	84
			%		
	BH117_0.0-0.1	SE147094.025		60 - 130%	80
	BH118_0.4-0.8	SE147094.028	%	60 - 130%	76
	BH119_0.0-0.1	SE147094.029	%	60 - 130%	104
	SP1-1	SE147094.033	%	60 - 130%	100
	SP1-2	SE147094.034	%	60 - 130%	96
4-p-terphenyl (Surrogate)	BH101_0.0-0.1	SE147094.001	%	60 - 130%	96
	BH102_0.0-0.1	SE147094.003	%	60 - 130%	80
	BH103_0.0-0.1	SE147094.004	%	60 - 130%	110
	BH104M_0.4-0.5	SE147094.006	%	60 - 130%	104
	BH105_0.0-0.1	SE147094.007	%	60 - 130%	110
	BH106M_0.6-0.7	SE147094.009	%	60 - 130%	100
	BH107_0.2-0.3	SE147094.011	%	60 - 130%	108
	BH108_0.2-0.3	SE147094.012	%	60 - 130%	86
	BH109_0.2-0.3	SE147094.013	%	60 - 130%	104
	BH110_0.3-0.4	SE147094.015	%	60 - 130%	100
	BH111_0.2-0.3	SE147094.015	%	60 - 130%	100
		SE147094.018	%		
	BH112_0.2-0.3			60 - 130%	90
	BH113_0.2-0.3	SE147094.019	%	60 - 130%	110
	BH114_0.2-0.3	SE147094.020	%	60 - 130%	100
	BH115_0.2-0.3 BH116_0.2-0.3	SE147094.022 SE147094.024	%	60 - 130% 60 - 130%	100 114

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OP Pesticides in Soil (continued)				Method: ME-(AU)-[E	-
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d14-p-terphenyl (Surrogate)	BH117_0.0-0.1	SE147094.025	%	60 - 130%	108
	BH118_0.4-0.8	SE147094.028	%	60 - 130%	110
	BH119_0.0-0.1	SE147094.029	%	60 - 130%	110
	SP1-1	SE147094.033	%	60 - 130%	114
	SP1-2	SE147094.034	%	60 - 130%	122
PAH (Polynuclear Aromatic Hydrocarbons) in Soil				Method: ME	-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH101_0.0-0.1	SE147094.001	%	70 - 130%	80
	BH101_0.4-0.5	SE147094.002	%	70 - 130%	94
	BH102_0.0-0.1	SE147094.003	%	70 - 130%	76
	BH103_0.0-0.1	SE147094.004	%	70 - 130%	86
	BH104M_0.4-0.5	SE147094.006	%	70 - 130%	82
	BH105_0.0-0.1	SE147094.007	%	70 - 130%	86
	BH106M_0.6-0.7	SE147094.009	%	70 - 130%	88
	BH106M_0.9-1.0	SE147094.010	%	70 - 130%	86
	BH107_0.2-0.3	SE147094.011	%	70 - 130%	82
	BH108_0.2-0.3	SE147094.012	%	70 - 130%	78
	BH109_0.2-0.3	SE147094.013	%	70 - 130%	80
	BH109_0.7-0.8	SE147094.014	%	70 - 130%	86
	BH110_0.3-0.4	SE147094.015	%	70 - 130%	86
	BH111_0.2-0.3	SE147094.016	%	70 - 130%	78
	BH111_1.1-1.2	SE147094.017	%	70 - 130%	84
	BH112_0.2-0.3	SE147094.018	%	70 - 130%	80
	BH113_0.2-0.3	SE147094.019	%	70 - 130%	84
	BH114_0.2-0.3	SE147094.020	%	70 - 130%	84
	BH114_1.0-1.1	SE147094.021	%	70 - 130%	90
	BH115_0.2-0.3	SE147094.022	%	70 - 130%	80
	BH115_0.5-0.6	SE147094.023	%	70 - 130%	74
	BH116_0.2-0.3	SE147094.024	%	70 - 130%	84
	BH117_0.0-0.1	SE147094.025	%	70 - 130%	80
	BH117M_1.0-1.1	SE147094.026	%	70 - 130%	78
	BH118_0.4-0.8	SE147094.028	%	70 - 130%	76
	BH119_0.0-0.1	SE147094.029	%	70 - 130%	104
	SP1-1	SE147094.033	%	70 - 130%	100
	SP1-2	SE147094.034	%	70 - 130%	96
d14-p-terphenyl (Surrogate)	BH101_0.0-0.1	SE147094.001	%	70 - 130%	96
	BH101_0.4-0.5	SE147094.002	%	70 - 130%	106
	BH102_0.0-0.1	SE147094.003	%	70 - 130%	80
	BH103_0.0-0.1	SE147094.004	%	70 - 130%	110
	BH104M_0.4-0.5	SE147094.006	%	70 - 130%	104
	BH105_0.0-0.1	SE147094.007	%	70 - 130%	110
	BH106M_0.6-0.7	SE147094.009	%	70 - 130%	100
	BH106M_0.9-1.0	SE147094.010	%	70 - 130%	98
	BH107_0.2-0.3	SE147094.011	%	70 - 130%	108
	BH108_0.2-0.3	SE147094.012	%	70 - 130%	86
	BH109_0.2-0.3	SE147094.013	%	70 - 130%	104
	BH109_0.7-0.8	SE147094.014	%	70 - 130%	110
	BH110_0.3-0.4	SE147094.015	%	70 - 130%	100
	BH111_0.2-0.3	SE147094.016	%	70 - 130%	106
	BH111_1.1-1.2	SE147094.017	%	70 - 130%	106
	BH112_0.2-0.3	SE147094.018	%	70 - 130%	90
	BH113_0.2-0.3	SE147094.019	%	70 - 130%	110
	BH114_0.2-0.3	SE147094.020	%	70 - 130%	100
	BH114_1.0-1.1	SE147094.021	%	70 - 130%	102
	BH115_0.2-0.3	SE147094.022	%	70 - 130%	100
	BH115_0.5-0.6	SE147094.023	%	70 - 130%	104
	BH116_0.2-0.3	SE147094.024	%	70 - 130%	114
	BH117_0.0-0.1	SE147094.025	%	70 - 130%	108
	BH117M_1.0-1.1	SE147094.026	%	70 - 130%	120
	BH118_0.4-0.8	SE147094.028	%	70 - 130%	110
			<i>,</i> •		

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

rameter	Sample Name	Sample Number	Units	Criteria	Recovery %
14-p-terphenyl (Surrogate)	BH119_0.0-0.1	SE147094.029	%	70 - 130%	110
	SP1-1	SE147094.033	%	70 - 130%	114
	SP1-2	SE147094.034	%	70 - 130%	122
-nitrobenzene (Surrogate)	BH101_0.0-0.1	SE147094.001	%	70 - 130%	102
	BH101_0.4-0.5	SE147094.002	%	70 - 130%	94
	BH102_0.0-0.1	SE147094.003	%	70 - 130%	86
	BH103_0.0-0.1	SE147094.004	%	70 - 130%	116
	BH104M_0.4-0.5	SE147094.006	%	70 - 130%	108
	BH105_0.0-0.1	SE147094.007	%	70 - 130%	114
	BH106M_0.6-0.7	SE147094.009	%	70 - 130%	108
	BH106M_0.9-1.0	SE147094.010	%	70 - 130%	102
	BH107_0.2-0.3	SE147094.011	%	70 - 130%	102
	BH108_0.2-0.3	SE147094.012	%	70 - 130%	86
	BH109_0.2-0.3	SE147094.013	%	70 - 130%	108
	BH109_0.7-0.8	SE147094.014	%	70 - 130%	114
	BH110_0.3-0.4	SE147094.015	%	70 - 130%	102
	BH111_0.2-0.3	SE147094.016	%	70 - 130%	98
	BH111_1.1-1.2	SE147094.017	%	70 - 130%	98
	BH112_0.2-0.3	SE147094.018	%	70 - 130%	84
	BH113_0.2-0.3	SE147094.019	%	70 - 130%	106
	BH114_0.2-0.3	SE147094.020	%	70 - 130%	96
	BH114_1.0-1.1	SE147094.021	%	70 - 130%	90
	BH115_0.2-0.3	SE147094.022	%	70 - 130%	84
	BH115_0.5-0.6	SE147094.023	%	70 - 130%	90
	BH116_0.2-0.3	SE147094.024	%	70 - 130%	98
	BH117_0.0-0.1	SE147094.025	%	70 - 130%	90
	BH117M_1.0-1.1	SE147094.026	%	70 - 130%	104
	BH118_0.4-0.8	SE147094.028	%	70 - 130%	94
	BH119_0.0-0.1	SE147094.029	%	70 - 130%	108
	SP1-1	SE147094.033	%	70 - 130%	118
	SP1-2	SE147094.034	%	70 - 130%	112

od: ME-(AU)-[ENV]AN400/AI

CBs in Soil				Method: ME-(AU)-	[ENV]AN400/AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH101_0.0-0.1	SE147094.001	%	60 - 130%	109
	BH102_0.0-0.1	SE147094.003	%	60 - 130%	101
	BH103_0.0-0.1	SE147094.004	%	60 - 130%	106
	BH104M_0.4-0.5	SE147094.006	%	60 - 130%	96
	BH105_0.0-0.1	SE147094.007	%	60 - 130%	113
	BH106M_0.6-0.7	SE147094.009	%	60 - 130%	100
	BH107_0.2-0.3	SE147094.011	%	60 - 130%	106
	BH108_0.2-0.3	SE147094.012	%	60 - 130%	107
	BH109_0.2-0.3	SE147094.013	%	60 - 130%	98
	BH110_0.3-0.4	SE147094.015	%	60 - 130%	109
	BH111_0.2-0.3	SE147094.016	%	60 - 130%	103
	BH112_0.2-0.3	SE147094.018	%	60 - 130%	106
	BH113_0.2-0.3	SE147094.019	%	60 - 130%	93
	BH114_0.2-0.3	SE147094.020	%	60 - 130%	115
	BH115_0.2-0.3	SE147094.022	%	60 - 130%	99
	BH116_0.2-0.3	SE147094.024	%	60 - 130%	102
	BH117_0.0-0.1	SE147094.025	%	60 - 130%	108
	BH118_0.4-0.8	SE147094.028	%	60 - 130%	108
	BH119_0.0-0.1	SE147094.029	%	60 - 130%	100
	SP1-1	SE147094.033	%	60 - 130%	97
	SP1-2	SE147094.034	%	60 - 130%	102
OC's in Soil				Method: ME-(AU)-	ENVJAN433/AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH101_0.0-0.1	SE147094.001	%	60 - 130%	87

SE147094.002

SE147094.003

SE147094.004

BH101_0.4-0.5

BH102 0.0-0.1

BH103_0.0-0.1

85

92

110

60 - 130%

60 - 130%

60 - 130%

%

%

%

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433/AN434 Recovery % Units Criteria Parameter Sample Name Sample Number Bromofluorobenzene (Surrogate) BH104M_0.4-0.5 SE147094.006 % 60 - 130% 88 BH105_0.0-0.1 SE147094.007 60 - 130% 90 % BH106M 0.6-0.7 SE147094.009 % 60 - 130% 81 BH106M_0.9-1.0 SE147094.010 60 - 130% 90 % BH107_0.2-0.3 SE147094.011 60 - 130% 88 % BH108 0.2-0.3 SE147094.012 % 60 - 130% 103 BH109 0.2-0.3 SE147094.013 % 60 - 130% 80 BH109_0.7-0.8 SE147094.014 % 60 - 130% 89 BH110 0.3-0.4 SE147094.015 % 60 - 130% 82 BH111 0.2-0.3 SE147094.016 60 - 130% 78 % BH111_1.1-1.2 SE147094.017 % 60 - 130% 88 BH112 0.2-0.3 SE147094.018 % 60 - 130% 77 BH113 0.2-0.3 SE147094.019 % 60 - 130% 110 BH114_0.2-0.3 SE147094.020 60 - 130% 90 % BH114 1.0-1.1 SE147094.021 % 60 - 130% 99 BH115_0.2-0.3 SE147094.022 60 - 130% 94 % BH115_0.5-0.6 SE147094.023 % 60 - 130% 92 BH116 0.2-0.3 SE147094.024 % 60 - 130% 89 BH117 0.0-0.1 SE147094.025 % 60 - 130% 99 BH117M_1.0-1.1 SE147094.026 60 - 130% 88 % BH118 0.4-0.8 SE147094.028 % 60 - 130% 88 BH119_0.0-0.1 SE147094.029 60 - 130% 88 % QD-01 SE147094.030 % 60 - 130% 99 Trip Blank SE147094.032 92 % 60 - 130% SP1-1 SE147094 033 % 60 - 130% 100 SE147094.034 SP1-2 % 60 - 130% 101 d4-1,2-dichloroethane (Surrogate) BH101_0.0-0.1 SE147094.001 % 60 - 130% 84 BH101 0.4-0.5 SE147094.002 % 60 - 130% 80 BH102_0.0-0.1 SE147094.003 % 60 - 130% 84 SE147094.004 BH103 0.0-0.1 % 60 - 130% 85 BH104M 0.4-0.5 SE147094.006 % 60 - 130% 88 BH105_0.0-0.1 SE147094.007 % 60 - 130% 86 BH106M 0.6-0.7 SE147094.009 % 60 - 130% 83 BH106M 0.9-1.0 SE147094.010 60 - 130% 91 % BH107_0.2-0.3 SE147094.011 60 - 130% 92 % BH108 0.2-0.3 SE147094.012 % 60 - 130% 89 BH109 0.2-0.3 SE147094.013 60 - 130% 87 % BH109_0.7-0.8 SE147094.014 % 60 - 130% 89 BH110 0.3-0.4 SE147094.015 % 60 - 130% 84 BH111 0 2-0 3 SE147094 016 % 60 - 130% 94 SE147094.017 60 - 130% 90 BH111_1.1-1.2 % BH112_0.2-0.3 SE147094.018 60 - 130% 87 % BH113 0.2-0.3 SE147094.019 % 60 - 130% 99 BH114_0.2-0.3 SE147094.020 % 60 - 130% 90 BH114 1.0-1.1 SE147094.021 % 60 - 130% 88 BH115 0.2-0.3 SE147094 022 60 - 130% 76 % SE147094.023 BH115_0.5-0.6 % 60 - 130% 93 BH116_0.2-0.3 SE147094.024 85 % 60 - 130% BH117 0.0-0.1 SE147094.025 60 - 130% 86 % BH117M_1.0-1.1 SE147094.026 % 60 - 130% 100 BH118 0.4-0.8 SE147094.028 % 60 - 130% 89 BH119_0.0-0.1 SE147094.029 60 - 130% 89 % QD-01 SE147094.030 % 60 - 130% 80 Trip Blank SE147094.032 % 60 - 130% 89 SP1-1 SE147094.033 60 - 130% 82 % SP1-2 SE147094.034 60 - 130% 104 % d8-toluene (Surrogate) 112 BH101_0.0-0.1 SE147094.001 60 - 130% % BH101 0.4-0.5 SE147094.002 % 60 - 130% 112 SE147094.003 60 - 130% BH102_0.0-0.1 % 116 123 BH103 0.0-0.1 SE147094.004 % 60 - 130% BH104M 0.4-0.5 SE147094.006 60 - 130% 119 %

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

/OC's in Soil (continued)				Method: ME-(AU)-	
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d8-toluene (Surrogate)	BH105_0.0-0.1	SE147094.007	%	60 - 130%	112
	BH106M_0.6-0.7	SE147094.009	%	60 - 130%	112
	BH106M_0.9-1.0	SE147094.010	%	60 - 130%	118
	BH107_0.2-0.3	SE147094.011	%	60 - 130%	119
	BH108_0.2-0.3	SE147094.012	%	60 - 130%	116
	BH109_0.2-0.3	SE147094.013	%	60 - 130%	106
	BH109_0.7-0.8	SE147094.014	%	60 - 130%	128
	BH110_0.3-0.4	SE147094.015	%	60 - 130%	115
	BH111_0.2-0.3	SE147094.016	%	60 - 130%	118
	BH111_1.1-1.2	SE147094.017	%	60 - 130%	109
	BH112_0.2-0.3	SE147094.018	%	60 - 130%	113
	BH113 0.2-0.3	SE147094.019	%	60 - 130%	126
	BH114_0.2-0.3	SE147094.020	%	60 - 130%	112
	BH114_1.0-1.1	SE147094.021	%	60 - 130%	123
	BH115_0.2-0.3	SE147094.022	%	60 - 130%	75
	BH115_0.5-0.6	SE147094.023	%	60 - 130%	100
	BH116_0.2-0.3	SE147094.024	%	60 - 130%	91
	BH117_0.0-0.1	SE147094.025	%	60 - 130%	94
		SE147094.025	%	60 - 130%	106
	BH117M_1.0-1.1 BH118 0.4-0.8	SE147094.028		60 - 130%	
			%		93
	BH119_0.0-0.1	SE147094.029	%	60 - 130%	96
	QD-01	SE147094.030	%	60 - 130%	84
	Trip Blank	SE147094.032	%	60 - 130%	94
	SP1-1	SE147094.033	%	60 - 130%	87
	SP1-2	SE147094.034	%	60 - 130%	112
Dibromofluoromethane (Surrogate)	BH101_0.0-0.1	SE147094.001	%	60 - 130%	73
	BH101_0.4-0.5	SE147094.002	%	60 - 130%	71
	BH102_0.0-0.1	SE147094.003	%	60 - 130%	73
	BH103_0.0-0.1	SE147094.004	%	60 - 130%	75
	BH104M_0.4-0.5	SE147094.006	%	60 - 130%	75
	BH105_0.0-0.1	SE147094.007	%	60 - 130%	73
	BH106M_0.6-0.7	SE147094.009	%	60 - 130%	72
	BH106M_0.9-1.0	SE147094.010	%	60 - 130%	79
	BH107_0.2-0.3	SE147094.011	%	60 - 130%	78
	BH108_0.2-0.3	SE147094.012	%	60 - 130%	76
	BH109_0.2-0.3	SE147094.013	%	60 - 130%	73
	BH109_0.7-0.8	SE147094.014	%	60 - 130%	77
	BH110_0.3-0.4	SE147094.015	%	60 - 130%	71
	BH111_0.2-0.3	SE147094.016	%	60 - 130%	79
	BH111_1.1-1.2	SE147094.017	%	60 - 130%	74
	BH112_0.2-0.3	SE147094.018	%	60 - 130%	75
	BH113_0.2-0.3	SE147094.019	%	60 - 130%	83
	BH114 0.2-0.3	SE147094.020	%	60 - 130%	74
	BH114_1.0-1.1	SE147094.021	%	60 - 130%	72
	BH115_0.2-0.3	SE147094.022	%	60 - 130%	73
	BH115_0.5-0.6	SE147094.023	%	60 - 130%	80
	BH116_0.2-0.3	SE147094.023	%	60 - 130%	83
	BH117_0.0-0.1	SE147094.024	%	60 - 130%	74
	BH117M_1.0-1.1	SE147094.025	%	60 - 130%	74
			%		
	BH118_0.4-0.8	SE147094.028		60 - 130%	73
	BH119_0.0-0.1	SE147094.029	%	60 - 130%	77
	QD-01	SE147094.030	%	60 - 130%	77
	Trip Blank	SE147094.032	%	60 - 130%	77
	SP1-1	SE147094.033	%	60 - 130%	73
	SP1-2	SE147094.034	%	60 - 130%	80
DCs in Water				Method: ME-(AU)-	ENVJAN433/A
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
Bromofluorobenzene (Surrogate)	QR-01	SE147094.031	%	40 - 130%	106
		SE147094.031	/0	40 - 130%	100

QR-01

QR-01

SE147094.031

SE147094.031

%

%

40 - 130%

40 - 130%

d8-toluene (Surrogate)

d4-1,2-dichloroethane (Surrogate)

103

95

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOCs in Water (continued) Method: ME-(AU)-[ENV]AN433/AN434 Criteria Recovery % Sample Name Units Parameter Sample Number Dibromofluoromethane (Surrogate) QR-01 SE147094.031 40 - 130% 114 Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433/AN434/AN410 Parameter Sample Nan Sample Num Criteria Recovery % Units Bromofluorobenzene (Surrogate) BH101 0.0-0.1 SE147094.001 % 60 - 130% 87 BH101_0.4-0.5 SE147094.002 % 60 - 130% 85 BH102_0.0-0.1 SE147094.003 % 60 - 130% 92 BH103 0.0-0.1 SE147094.004 % 60 - 130% 110 BH104M_0.4-0.5 SE147094.006 60 - 130% 88 % BH105_0.0-0.1 SE147094.007 60 - 130% 90 % BH106M 0.6-0.7 SE147094.009 % 60 - 130% 81 BH106M_0.9-1.0 SE147094.010 60 - 130% % 90 BH107_0.2-0.3 SE147094.011 88 % 60 - 130% BH108 0.2-0.3 SE147094.012 % 60 - 130% 103 BH109_0.2-0.3 SE147094.013 % 60 - 130% 80 BH109_0.7-0.8 SE147094.014 60 - 130% 89 % BH110 0.3-0.4 SE147094.015 % 60 - 130% 82 BH111_0.2-0.3 SE147094.016 60 - 130% 78 % BH111_1.1-1.2 SE147094.017 60 - 130% 88 % BH112 0.2-0.3 SE147094.018 % 60 - 130% 77 BH113_0.2-0.3 SE147094.019 60 - 130% 110 % 90 BH114_0.2-0.3 SE147094.020 60 - 130% % BH114 1.0-1.1 SE147094.021 % 60 - 130% 99 BH115_0.2-0.3 SE147094.022 60 - 130% 94 % BH115_0.5-0.6 SE147094.023 92 60 - 130% % BH116 0.2-0.3 SE147094.024 % 60 - 130% 89 BH117_0.0-0.1 SE147094.025 60 - 130% 99 % BH117M_1.0-1.1 SE147094.026 % 60 - 130% 88 BH118 0.4-0.8 SE147094.028 % 60 - 130% 88 BH119_0.0-0.1 SE147094.029 % 60 - 130% 88 QD-01 SE147094.030 60 - 130% 99 % SP1-1 SE147094.033 % 60 - 130% 100 SP1-2 SE147094.034 % 60 - 130% 101 d4-1,2-dichloroethane (Surrogate) BH101_0.0-0.1 SE147094.001 % 60 - 130% 84 BH101 0.4-0.5 SE147094.002 % 60 - 130% 80 BH102_0.0-0.1 SE147094.003 % 60 - 130% 84 BH103_0.0-0.1 SE147094.004 60 - 130% 85 % BH104M 0.4-0.5 SE147094.006 % 60 - 130% 88 BH105_0.0-0.1 SE147094.007 % 60 - 130% 86 BH106M_0.6-0.7 SE147094.009 % 60 - 130% 83 BH106M 0.9-1.0 SE147094.010 % 60 - 130% 91 BH107_0.2-0.3 SE147094.011 60 - 130% 92 % BH108_0.2-0.3 SE147094.012 60 - 130% 89 % BH109 0.2-0.3 SE147094.013 % 60 - 130% 87 BH109_0.7-0.8 SE147094.014 60 - 130% 89 % BH110_0.3-0.4 SE147094.015 60 - 130% 84 % BH111 0.2-0.3 SE147094.016 % 60 - 130% 94 BH111_1.1-1.2 SE147094.017 % 60 - 130% 90 BH112_0.2-0.3 SE147094.018 % 60 - 130% 87 BH113 0.2-0.3 SE147094.019 % 60 - 130% 99 BH114_0.2-0.3 SE147094.020 % 60 - 130% 90 BH114_1.0-1.1 SE147094.021 % 60 - 130% 88 BH115 0.2-0.3 SE147094.022 % 60 - 130% 76 BH115_0.5-0.6 SE147094.023 % 60 - 130% 93 BH116_0.2-0.3 SE147094.024 % 60 - 130% 85 BH117 0.0-0.1 SE147094.025 % 60 - 130% 86 BH117M_1.0-1.1 SE147094.026 60 - 130% 100 % BH118_0.4-0.8 SE147094.028 60 - 130% 89 % BH119 0.0-0.1 SE147094.029 % 60 - 130% 89

QD-01

SP1-1

SE147094.030

SE147094.033

%

%

60 - 130%

60 - 130%

80

82

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued)

Method: ME-(AU)-[ENV]AN433/AN434/AN410

Irameter	Sample Name	Sample Number	Units	Criteria	Recovery 9
4-1,2-dichloroethane (Surrogate)	SP1-2	SE147094.034	%	60 - 130%	104
B-toluene (Surrogate)	BH101_0.0-0.1	SE147094.001	%	60 - 130%	112
	BH101_0.4-0.5	SE147094.002	%	60 - 130%	112
	BH102_0.0-0.1	SE147094.003	%	60 - 130%	116
	BH103_0.0-0.1	SE147094.004	%	60 - 130%	123
	BH104M_0.4-0.5	SE147094.006	%	60 - 130%	119
	BH105_0.0-0.1	SE147094.007	%	60 - 130%	112
	BH106M_0.6-0.7	SE147094.009	%	60 - 130%	112
	BH106M_0.9-1.0	SE147094.010	%	60 - 130%	118
	BH107_0.2-0.3	SE147094.011	%	60 - 130%	119
	BH108_0.2-0.3	SE147094.012	%	60 - 130%	116
	BH109_0.2-0.3	SE147094.012	%	60 - 130%	106
		SE147094.013	%		
	BH109_0.7-0.8			60 - 130% 60 - 130%	128
	BH110_0.3-0.4	SE147094.015	%		115
	BH111_0.2-0.3	SE147094.016	%	60 - 130%	118
	BH111_1.1-1.2	SE147094.017	%	60 - 130%	109
	BH112_0.2-0.3	SE147094.018	%	60 - 130%	113
	BH113_0.2-0.3	SE147094.019	%	60 - 130%	126
	BH114_0.2-0.3	SE147094.020	%	60 - 130%	112
	BH114_1.0-1.1	SE147094.021	%	60 - 130%	123
	BH115_0.2-0.3	SE147094.022	%	60 - 130%	75
	BH115_0.5-0.6	SE147094.023	%	60 - 130%	100
	BH116_0.2-0.3	SE147094.024	%	60 - 130%	91
	BH117_0.0-0.1	SE147094.025	%	60 - 130%	94
	BH117M_1.0-1.1	SE147094.026	%	60 - 130%	106
	BH118_0.4-0.8	SE147094.028	%	60 - 130%	93
	BH119_0.0-0.1	SE147094.029	%	60 - 130%	96
	QD-01	SE147094.030	%	60 - 130%	84
	SP1-1	SE147094.033	%	60 - 130%	87
	SP1-2	SE147094.034	%	60 - 130%	112
romofluoromethane (Surrogate)	BH101_0.0-0.1	SE147094.001	%	60 - 130%	73
	BH101_0.4-0.5	SE147094.002	%	60 - 130%	71
	BH102_0.0-0.1	SE147094.003	%	60 - 130%	73
	BH103_0.0-0.1	SE147094.004	%	60 - 130%	75
	BH104M_0.4-0.5	SE147094.006	%	60 - 130%	75
	BH105_0.0-0.1	SE147094.007	%	60 - 130%	73
	BH106M_0.6-0.7	SE147094.009	%	60 - 130%	72
	BH106M_0.9-1.0	SE147094.010	%	60 - 130%	72
	BH107_0.2-0.3	SE147094.011	%	60 - 130%	78
	BH108_0.2-0.3	SE147094.012	%	60 - 130%	76
	BH109_0.2-0.3	SE147094.012	%	60 - 130%	73
		SE147094.014	%	60 - 130%	77
	BH109_0.7-0.8				
	BH110_0.3-0.4	SE147094.015	%	60 - 130%	71
	BH111_0.2-0.3	SE147094.016	%	60 - 130%	79
	BH111_1.1-1.2	SE147094.017	%	60 - 130%	74
	BH112_0.2-0.3	SE147094.018	%	60 - 130%	75
	BH113_0.2-0.3	SE147094.019	%	60 - 130%	83
	BH114_0.2-0.3	SE147094.020	%	60 - 130%	74
	BH114_1.0-1.1	SE147094.021	%	60 - 130%	72
	BH115_0.2-0.3	SE147094.022	%	60 - 130%	73
	BH115_0.5-0.6	SE147094.023	%	60 - 130%	80
	BH116_0.2-0.3	SE147094.024	%	60 - 130%	83
	BH117_0.0-0.1	SE147094.025	%	60 - 130%	74
	BH117M_1.0-1.1	SE147094.026	%	60 - 130%	79
	BH118_0.4-0.8	SE147094.028	%	60 - 130%	73
	BH119_0.0-0.1	SE147094.029	%	60 - 130%	77
	QD-01	SE147094.030	%	60 - 130%	77
	SP1-1	SE147094.033	%	60 - 130%	73
	SP1-2	SE147094.034	%	60 - 130%	80

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

olatile Petroleum Hydrocarbons in Water			Metho	d: ME-(AU)-[ENV]A	N433/AN434/AN410
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	QR-01	SE147094.031	%	40 - 130%	106
d4-1,2-dichloroethane (Surrogate)	QR-01	SE147094.031	%	60 - 130%	103
d8-toluene (Surrogate)	QR-01	SE147094.031	%	40 - 130%	95
Dibromofluoromethane (Surrogate)	QR-01	SE147094.031	%	40 - 130%	114

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(AU)-[ENV]AN311/AN312
Sample Number	Parameter	Units	LOR	Result
LB091971.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Mercury in Soil			Meth	od: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB091900.001	Mercury	mg/kg	0.01	<0.01
LB091901.001	Mercury	mg/kg	0.01	<0.01

OC Pesticides in Soil

ample Number	Parameter	Units	LOR	Result
3091730.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.1
	Gamma Chlordane	mg/kg	0.2	<0.2
	Alpha Chlordane		0.1	<0.1
		mg/kg		
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	101
91732.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.2	<0.2
	p,p'-DDT		0.1	<0.1
		mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg		
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	130

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

OP Pesticides in Soil

P Pesticides in Soil				Method: ME	-(AU)-[ENV]AN400
Sample Number		Parameter	Units	LOR	Result
B091730.001		Dichlorvos	mg/kg	0.5	<0.5
		Dimethoate	mg/kg	0.5	<0.5
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5
		Fenitrothion	mg/kg	0.2	<0.2
		Malathion	mg/kg	0.2	<0.2
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
		Bromophos Ethyl	mg/kg	0.2	<0.2
		Methidathion	mg/kg	0.5	<0.5
		Ethion	mg/kg	0.2	<0.2
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Surrogates	2-fluorobiphenyl (Surrogate)	%	-	82
		d14-p-terphenyl (Surrogate)	%	-	106
3091732.001		Dichlorvos	mg/kg	0.5	<0.5
		Dimethoate	mg/kg	0.5	<0.5
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5
		Fenitrothion	mg/kg	0.2	<0.2
		Malathion	mg/kg	0.2	<0.2
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
		Bromophos Ethyl	mg/kg	0.2	<0.2
Surrogates		Methidathion	mg/kg	0.5	<0.5
		Ethion	mg/kg	0.2	<0.2
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Surrogates	2-fluorobiphenyl (Surrogate)	%	-	100
		d14-p-terphenyl (Surrogate)	%	-	116
H (Polynuclear Arom	atic Hydrocarbons) in Soil			Meth	od: ME-(AU)-[ENV
ample Number		Parameter	Units	LOR	Result
3091730.001		Naphthalene	mg/kg	0.1	<0.1
		2-methylnaphthalene	mg/kg	0.1	<0.1
		1-methylnaphthalene	mg/kg	0.1	<0.1
		Acenaphthylene	mg/kg	0.1	<0.1
		Acenaphthene	mg/kg	0.1	<0.1
		Fluorene	mg/kg	0.1	<0.1
		Phenanthrene	mg/kg	0.1	<0.1
		Anthracene	mg/kg	0.1	<0.1
		Fluoranthene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1
		Chrysene	mg/kg	0.1	<0.1
		Benzo(a)pyrene	mg/kg	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
			mg/kg	0.1	<0.1

	Benzo(a)pyrene	mg/kg	0.1	<0.1
	Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
	Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1
	Benzo(ghi)perylene	mg/kg	0.1	<0.1
	Total PAH (18)	mg/kg	0.8	<0.8
Surrogates	d5-nitrobenzene (Surrogate)	%	-	94
	2-fluorobiphenyl (Surrogate)	%	-	82
	d14-p-terphenyl (Surrogate)	%	-	106
LB091732.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1
	Anthracene	mg/kg	0.1	<0.1
	Fluoranthene	mg/kg	0.1	<0.1
	Pyrene	mg/kg	0.1	<0.1
	Benzo(a)anthracene	mg/kg	0.1	<0.1
	Chrysene	mg/kg	0.1	<0.1

Method: ME-(AU)-[ENV]AN420

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Sample Number		Parameter	Units	LOR	Result
LB091732.001		Benzo(a)pyrene	mg/kg	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	102
		2-fluorobiphenyl (Surrogate)	%	-	100
		d14-p-terphenyl (Surrogate)	%	-	116
PCBs in Soil				Method: ME-	(AU)-[ENV]AN400/AN420

PCBs in Soil

Sample Number Parameter Units LB091730.001 Arochlor 1016 mg/kg Arochlor 1221 mg/kg Arochlor 1232 mg/kg Arochlor 1242 mg/kg Arochlor 1248 mg/kg Arochlor 1254 mg/kg Arochlor 1260 mg/kg Arochlor 1262 mg/kg	LOR 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Result <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
Arochlor 1221mg/kgArochlor 1232mg/kgArochlor 1242mg/kgArochlor 1248mg/kgArochlor 1254mg/kgArochlor 1260mg/kgArochlor 1262mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
Arochlor 1232mg/kgArochlor 1242mg/kgArochlor 1248mg/kgArochlor 1254mg/kgArochlor 1260mg/kgArochlor 1262mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
Arochlor 1242mg/kgArochlor 1248mg/kgArochlor 1254mg/kgArochlor 1260mg/kgArochlor 1262mg/kg	0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2
Arochlor 1248mg/kgArochlor 1254mg/kgArochlor 1260mg/kgArochlor 1262mg/kg	0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2
Arochlor 1254mg/kgArochlor 1260mg/kgArochlor 1262mg/kg	0.2 0.2 0.2	<0.2 <0.2
Arochlor 1260 mg/kg Arochlor 1262 mg/kg	0.2 0.2	<0.2
Arochlor 1262 mg/kg	0.2	
		<0.2
A stable 4000 stable for the stable		-0.2
Arochlor 1268 mg/kg	0.2	<0.2
Total PCBs (Arochlors) mg/kg	1	<1
Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) %	-	101
LB091732.001 Arochior 1016 mg/kg	0.2	<0.2
Arochlor 1221 mg/kg	0.2	<0.2
Arochlor 1232 mg/kg	0.2	<0.2
Arochlor 1242 mg/kg	0.2	<0.2
Arochlor 1248 mg/kg	0.2	<0.2
Arochlor 1254 mg/kg	0.2	<0.2
Arochlor 1260 mg/kg	0.2	<0.2
Arochior 1262 mg/kg	0.2	<0.2
Arochior 1268 mg/kg	0.2	<0.2
Total PCBs (Arochlors) mg/kg	1	<1
Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) %	-	130

Total Recoverable Metals in Soil by ICPOES

Total Recoverable Metals in Soil by ICPOES			Method: ME-(AU)-[ENV]AN040	
Sample Number	Parameter	Units	LOR	Result
LB091836.001	Arsenic, As	mg/kg	3	<3
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.3	<0.3
	Copper, Cu	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Nickel, Ni	mg/kg	0.5	<0.5
	Zinc, Zn	mg/kg	0.5	<0.5
LB091837.001	Arsenic, As	mg/kg	3	<3
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.3	<0.3
	Copper, Cu	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Nickel, Ni	mg/kg	0.5	<0.5
	Zinc, Zn	mg/kg	0.5	<0.5
Trace Metals (Dissolved) in Water by ICPMS			Meth	od: ME-(AU)-[ENV]AN31
Sample Number	Parameter	Units	LOR	Result

Sample Number	Parameter	Units	LOR	Result
LB091699.001	Arsenic, As	μg/L	1	<1
	Cadmium, Cd	μg/L	0.1	<0.1
	Chromium, Cr	μg/L	1	<1
	Copper, Cu	μg/L	1	<1
	Lead, Pb	μg/L	1	<1
	Nickel, Ni	μg/L	1	<1
	Zinc, Zn	μg/L	5	<5

Units LOR

SE147094 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Number		Parameter	Units	LOR	Result
LB091730.001		TRH C10-C14		20	<20
LD091730.001		TRH C10-C14 TRH C15-C28	mg/kg	45	<20
		TRH C19-C20 TRH C29-C36	mg/kg mg/kg	45	<45
		TRH C32-C30		100	<100
		TRH C37-C40	mg/kg	110	<110
LB091732.001		TRH C10-C14	mg/kg mg/kg	20	<20
20031732.001		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36	mg/kg	45	<45
		TRH C32-C30	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
RH (Total Receiverabl	le Hydrocarbons) in Water		inging		od: ME-(AU)-[ENV]AN
•	le Hydrocarbons) in water	Doromotor	Unito	LOR	
Sample Number		Parameter	Units		Result
LB091733.001		TRH C10-C14	μg/L	50	<50
		TRH C15-C28	μg/L	200	<200
		TRH C29-C36	μg/L	200	<200
		TRH C37-C40	μg/L	200	<200
/OC's in Soil					(AU)-[ENV]AN433/AN
Sample Number		Parameter	Units	LOR	Result
LB091692.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	82
		d4-1,2-dichloroethane (Surrogate)	%	-	91
		d8-toluene (Surrogate)	%	-	115
		Bromofluorobenzene (Surrogate)	%	-	83
	Totals	Total BTEX*	mg/kg	0.6	<0.6
LB091693.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	81
		d4-1,2-dichloroethane (Surrogate)	%	-	91
		d8-toluene (Surrogate)	%	-	98
		Bromofluorobenzene (Surrogate)	%		97
	Totals	Total BTEX*	mg/kg	0.6	<0.6
OCs in Water				Method: ME-	(AU)-[ENV]AN433/AN
Sample Number		Parameter	Units	LOR	Result
LB091916.001	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		o-xylene	μg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	92
		d4-1,2-dichloroethane (Surrogate)	%	-	88
		d8-toluene (Surrogate)	%	-	85
		Bromofluorobenzene (Surrogate)	%	-	123
olatile Petroleum Hyd	Irocarbons in Soil				NV]AN433/AN434/AI
Sample Number		Parameter	Units	LOR	Result
LB091692.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	82
		d4-1,2-dichloroethane (Surrogate)	%	-	91
		d8-toluene (Surrogate)	%		115
_B091693.001		TRH C6-C9	mg/kg	20	<20

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum Hydrocarbons in Soil (continued)

Method: ME-(AU)-[ENV]AN433/AN434/AN410

Sample Number		Parameter	Units	LOR	Result
LB091693.001	Surrogates	Dibromofluoromethane (Surrogate)	%	-	81
		d4-1,2-dichloroethane (Surrogate)	%	-	91
		d8-toluene (Surrogate)	%	-	98
Volatile Petroleum Hyd	rocarbons in Water			Method: ME-(AU)-[E	NV]AN433/AN434/AN410
Sample Number		Parameter	Units	LOR	Result
LB091916.001		TRH C6-C9	μg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	92
		d4-1,2-dichloroethane (Surrogate)	%	-	88
		d8-toluene (Surrogate)	%	-	85
		Bromofluorobenzene (Surrogate)	%	-	123

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil

Mercury in Soil						Meth	od: ME-(AU)-	(ENVJAN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE147094.009	LB091900.014	Mercury	mg/kg	0.01	0.03	0.03	194	0
SE147094.018	LB091900.024	Mercury	mg/kg	0.01	<0.01	<0.01	200	0
SE147094.029	LB091901.014	Mercury	mg/kg	0.01	0.02	0.02	200	0
SE147101.009	LB091901.023	Mercury	mg/kg	0.01	0.014874444	40.0142886597	200	0
Moisture Content						Meth	od: ME-(AU)-	(ENVJAN002
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %

OC Pesticides in S	Soil					Method: ME-		N400/AN420
SE147094.034	LB091691.033	% Moisture	%w/w	0.5	3.8	3.7	56	2
SE147094.022	LB091691.022	% Moisture	%w/w	0.5	21	21	35	3
SE147094.012	LB091691.011	% Moisture	%w/w	0.5	16	16	36	2

OC Pesticides in Soil

OC Pesticides in S								-(AU)-[ENV]AI	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE147094.015	LB091730.027		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	200	0
			Alpha BHC	mg/kg	0.1	<0.1	0	200	0
			Lindane	mg/kg	0.1	<0.1	0	200	0
			Heptachlor	mg/kg	0.1	<0.1	0	200	0
			Aldrin	mg/kg	0.1	<0.1	0	200	0
			Beta BHC	mg/kg	0.1	<0.1	0	200	0
			Delta BHC	mg/kg	0.1	<0.1	0	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	0	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	0	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	0	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Dieldrin	mg/kg	0.2	<0.2	0	200	0
			Endrin	mg/kg	0.2	<0.2	0	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	0	200	0
			p,p'-DDD	mg/kg	0.2	<0.1	0	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	0	200	0
			· · · · · · · · · · · · · · · · · · ·		0.1	<0.1	0	200	0
			Methoxychlor Endrin Ketone	mg/kg	0.1	<0.1	0	200	0
				mg/kg	0.1	<0.1	0	200	0
			Isodrin	mg/kg					
			Mirex	mg/kg	0.1	<0.1	0	200	0
05447004.000	1 000 1700 005	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	0.16	30	2
SE147094.022	LB091730.025		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			Deta Endosulian	ing/kg	0.2	-0.2	-0.2	200	•

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE147094.022	LB091730.025		p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.19	30	24
E147094.034	LB091732.025		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	200	0
			Alpha BHC	mg/kg	0.1	<0.1	0	200	0
			Lindane	mg/kg	0.1	<0.1	0	200	0
			Heptachlor	mg/kg	0.1	<0.1	0	200	0
			Aldrin	mg/kg	0.1	<0.1	0	200	0
			Beta BHC	mg/kg	0.1	<0.1	0	200	0
			Delta BHC	mg/kg	0.1	<0.1	0	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	0	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	0	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	0	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Dieldrin	mg/kg	0.2	<0.2	0	200	0
			Endrin	mg/kg	0.2	<0.2	0	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	0	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	0	200	0
			Methoxychlor	mg/kg	0.1	<0.1	0	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	0	200	0
			Isodrin	mg/kg	0.1	<0.1	0	200	0
			Mirex	mg/kg	0.1	<0.1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.153	30	0
P Pesticides in S	2011	Sunogatoo	Political and the Agrona (Politica) (confegato)			0.10		-(AU)-[ENV]A	
			D	Units		Quinteral		Criteria %	
Driginal	Duplicate		Parameter		LOR	Original			RPD
SE147094.015	LB091730.027		Dichlorvos	mg/kg	0.5	<0.5	0	200	0
			Dimethoate	mg/kg	0.5	<0.5	0	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	0.02	200	0
			Fenitrothion	mg/kg	0.2	<0.2	0	200	0
			Malathion	mg/kg	0.2	<0.2	0	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	0.01	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	0	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	0	200	0
			Methidathion	mg/kg	0.5	<0.5	0	200	0
			Ethion	mg/kg	0.2	<0.2	0	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	0	200	0

SE147094.022

Surrogates

LB091730.025

2-fluorobiphenyl (Surrogate)

d14-p-terphenyl (Surrogate)

Chlorpyrifos (Chlorpyrifos Ethyl)

Parathion-ethyl (Parathion)

Bromophos Ethyl

Methidathion

Dichlorvos

Dimethoate

Fenitrothion

Malathion

Diazinon (Dimpylate)

2

8

0

0

0

0

0

0

0

0

0

0.4

0.5

<0.5

<0.5

<0.5

<0.2

< 0.2

<0.2

<0.2

<0.2

<0.5

-

0.5

0.5

0.5

0.2

0.2

0.2

0.2

0.2

0.5

mg/kg

0.42

0.46

<0.5

<0.5

<0.5

<0.2

< 0.2

<0.2

<0.2

<0.2

<0.5

30

30

200

200

200

200

200

200

200

200

200

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OP Pesticides in S	oil (continued)						Method: ME	-(AU)-[ENV]A	N400/AN42
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE147094.022	LB091730.025		Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	3
		Currogutoo	d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	6
SE147094.033	LB091732.023		Dichlorvos	mg/kg	0.5	<0.5	0.0	200	0
SE147094.033	LD091/32.023		Direthoate		0.5	<0.5	0.04	200	0
				mg/kg			0.04	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5			
			Fenitrothion	mg/kg	0.2	<0.2	0.08	200	0
			Malathion	mg/kg	0.2	<0.2	0.01	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	0.01	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	0	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	0.02	200	0
			Methidathion	mg/kg	0.5	<0.5	0.01	200	0
			Ethion	mg/kg	0.2	<0.2	0.01	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	0.04	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	0
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.6	0.53	30	7
AH (Polvnuclear	Aromatic Hydrocarbo	ons) in Soil						od: ME-(AU)	
Original	Duplicate	,,	Parameter	Units	LOR	Original		Criteria %	RPD %
SE147094.015	LB091730.027				0.1	<0.1	0 0	200	0
3=14/094.015	LDU91/30.02/		Naphthalene	mg/kg					
			2-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	0	200	0
			Acenaphthene	mg/kg	0.1	<0.1	0	200	0
			Fluorene	mg/kg	0.1	<0.1	0	200	0
			Phenanthrene	mg/kg	0.1	<0.1	0.01	200	0
			Anthracene	mg/kg	0.1	<0.1	0.01	200	0
			Fluoranthene	mg/kg	0.1	<0.1	0.01	200	0
			Pyrene	mg/kg	0.1	<0.1	0.01	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	0.01	200	0
			Chrysene	mg/kg	0.1	<0.1	0.01	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0.01	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0.01	200	0
					0.1	<0.1	0.01	200	0
			Benzo(a)pyrene	mg/kg					0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0	200	
			Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	0	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0</td><td>200</td><td>0</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>0.242</td><td>134</td><td>0</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	0.242	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.121</td><td>175</td><td>0</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	0.121	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	0	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	30	2
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.42	30	2
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.46	30	8
SE147094.022	LB091730.025		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
02171007.022	20001700.020		2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
					0.1	<0.1		200	0
			1-methylnaphthalene	mg/kg			<0.1		
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(b&j)fluoranthene		0.1	<0.1	<0.1	200	0
				mg/kg					
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
E147094.022	LB091730.025		Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	<0.2	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>0</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	30	2
		ounogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	3
			d14-p-terphenyl (Surrogate)	mg/kg		0.4	0.4	30	6
E147094.033	LB091732.023		Naphthalene	mg/kg	0.1	<0.1	0.01	200	0
L14/034.033	LD031732.023		2-methylnaphthalene		0.1	<0.1	0.01	200	0
				mg/kg	0.1	<0.1	0.02	200	0
			1-methylnaphthalene	mg/kg	-				
			Acenaphthylene	mg/kg	0.1	<0.1	0	200	0
			Acenaphthene	mg/kg	0.1	<0.1	0.02	200	0
			Fluorene	mg/kg	0.1	<0.1	0	200	0
			Phenanthrene	mg/kg	0.1	<0.1	0.03	200	0
			Anthracene	mg/kg	0.1	<0.1	0	200	0
			Fluoranthene	mg/kg	0.1	<0.1	0.02	200	0
			Pyrene	mg/kg	0.1	<0.1	0.02	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	0.05	200	0
			Chrysene	mg/kg	0.1	<0.1	0.03	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0.05	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0.03	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	0.01	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0	200	0
			Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	0	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	0.01	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0</td><td>200</td><td>0</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>0.242</td><td>134</td><td>0</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	0.242	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.121</td><td>175</td><td>0</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	0.121	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	0	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.6	0.51	30	15
		-	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	0
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.6	0.53	30	7
E147117.007	LB091732.021		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene		0.1	0.1	0.2	95	19
			Anthracene	mg/kg	0.1	<0.1	<0.2	200	0
				mg/kg	0.1			64	
			Fluoranthene	mg/kg		0.3	0.3		10
			Pyrene	mg/kg	0.1	0.3	0.3	63	10
			Benzo(a)anthracene	mg/kg	0.1	0.2	0.2	84	2
			Chrysene	mg/kg	0.1	0.1	0.2	107	3
			Benzo(b&j)fluoranthene	mg/kg	0.1	0.1	0.1	107	15
			Benzo(k)fluoranthene	mg/kg	0.1	0.1	0.1	130	C
			Benzo(a)pyrene	mg/kg	0.1	0.1	0.1	110	8
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	163	C
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>130</td><td>0</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	<0.2	130	0
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td>118</td><td>C</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	118	C
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.2</td><td>0.2</td><td>100</td><td>3</td></lor=lor>	TEQ (mg/kg)	0.2	0.2	0.2	100	3
			Total PAH (18)	mg/kg	0.8	1.4	1.5	87	g
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	30	0
		Surrogates							C 2

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Duplicate		Parameter	Units	LOR	Original	Duplica <u>te</u>	Criteria %	RPD %
SE147094.015	LB091730.026		Arochlor 1016	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	0	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0.16	30	2
SE147094.022	LB091730.025		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	30	24
SE147094.034	LB091732.022		Arochlor 1016	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	0	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0.153	30	0

Total Recoverable Metals in Soil by ICPOES

Total Recoverable	Metals in Soil by ICPOES					Mediod. ME-	-(AU)-[ENV]AI	1040//41920
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE147094.009	LB091836.014	Arsenic, As	mg/kg	3	7	8	43	18
		Cadmium, Cd	mg/kg	0.3	0.3	0.3	123	2
		Chromium, Cr	mg/kg	0.3	12	13	34	10
		Copper, Cu	mg/kg	0.5	15	15	33	0
		Lead, Pb	mg/kg	1	20	20	35	1
		Nickel, Ni	mg/kg	0.5	9.7	9.8	35	2
		Zinc, Zn	mg/kg	0.5	43	47	34	9
SE147094.018	LB091836.024	Arsenic, As	mg/kg	3	8	7	44	17
		Cadmium, Cd	mg/kg	0.3	0.5	0.5	89	3
		Chromium, Cr	mg/kg	0.3	19	28	32	34 ②
		Copper, Cu	mg/kg	0.5	21	25	32	15
		Lead, Pb	mg/kg	1	21	22	35	6
		Nickel, Ni	mg/kg	0.5	20	26	32	25
		Zinc, Zn	mg/kg	0.5	52	62	34	19
SE147094.029	LB091837.014	Arsenic, As	mg/kg	3	6	6	47	5
		Cadmium, Cd	mg/kg	0.3	0.6	0.6	80	2
		Chromium, Cr	mg/kg	0.3	20	22	32	9
		Copper, Cu	mg/kg	0.5	28	30	32	6
		Lead, Pb	mg/kg	1	57	52	32	9
		Nickel, Ni	mg/kg	0.5	25	25	32	1
		Zinc, Zn	mg/kg	0.5	110	120	32	8
SE147101.010	LB091837.024	Arsenic, As	mg/kg	3	2.640901407	02.2754184682	71	15
		Cadmium, Cd	mg/kg	0.3	0.325190776	70.3220378654	123	1
		Chromium, Cr	mg/kg	0.3	10.219807970	90.5703400947	7 35	3
		Copper, Cu	mg/kg	0.5	32.804056675	52.9510218009	31	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE147101.010	LB091837.024		Lead, Pb	mg/kg	1		37.1586896303	44	3
L14/101.010	LD031037.024		Nickel, Ni	mg/kg	0.5		3.5978036587	44	11
			Zinc, Zn	mg/kg	0.5		20.0382416682	40	3
Matala (Dia	a hara albaha shika ka a ka a ka	2010	200, 20	iiig/kg	0.5	19.370047700			
	olved) in Water by IC	JPMS						d: ME-(AU)-	
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate		RPD
SE147075.001	LB091699.014		Zinc, Zn	µg/L	5	210	210	17	1
SE147094.031	LB091699.018		Arsenic, As	µg/L	1	<1	<1	200	0
			Cadmium, Cd	µg/L	0.1	<0.1	<0.1	200	0
			Chromium, Cr	µg/L	1	<1	<1	200	0
			Copper, Cu	µg/L	1	1	<1	133	12
			Lead, Pb	µg/L	1	<1	<1	200	0
			Nickel, Ni	µg/L	1	<1	<1	200	0
			Zinc, Zn	µg/L	5	<5	<5	152	0
RH (Total Recove	erable Hydrocarbons) in Soil					Metho	d: ME-(AU)-	[ENV]A
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
E147094.015	LB091730.026		TRH C10-C14	mg/kg	20	<20	0	200	C
			TRH C15-C28	mg/kg	45	<45	0	200	C
			TRH C29-C36	mg/kg	45	<45	0	200	C
			TRH C37-C40	mg/kg	100	<100	0	200	C
			TRH C10-C36 Total	mg/kg	110	<110	0	200	C
			TRH C10-C40 Total	mg/kg	210	<210	0	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	0	200	C
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	0	200	C
			TRH >C16-C34 (F3)	mg/kg	90	<90	0	200	C
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	C
E147094.022	LB091730.025		TRH C10-C14	mg/kg	20	<20	<20	173	C
			TRH C15-C28	mg/kg	45	<45	59	130	2
			TRH C29-C36	mg/kg	45	<45	<45	200	C
			TRH C37-C40	mg/kg	100	<100	<100	200	C
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	C
			TRH C10-C40 Total	mg/kg	210	<210	<210	200	C
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	35	119	33
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	35	119	3
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	C
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	C
SE147094.033	LB091732.022		TRH C10-C14	mg/kg	20	73	68	58	7
			TRH C15-C28	mg/kg	45	140	161	60	1:
			TRH C29-C36	mg/kg	45	230	258	49	1
			TRH C37-C40	mg/kg	100	<100	0	200	C
			TRH C10-C36 Total	mg/kg	110	440	487	54	g
			TRH C10-C40 Total	mg/kg	210	440	487	75	g
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	84	78	61	7
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	84	78	61	7
			TRH >C16-C34 (F3)	mg/kg	90	290	330	59	1
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	C
E147117.007	LB091732.021		TRH C10-C14	mg/kg	20	<20	<20	200	C
			TRH C15-C28	mg/kg	45	<45	<45	200	C
			TRH C29-C36	mg/kg	45	<45	<45	200	C
			TRH C37-C40	mg/kg	100	<100	<100	200	C
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	C
			TRH C10-C40 Total	mg/kg	210	<210	<210	200	C
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	<25	200	C
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	200	C
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	C
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	(
							Method: ME-(N439/
C's in Soil									199001/

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433/AN434 Original Dupl Parameter Units LOR Original Duplicate Criteria % RPD % LB091692.014 SE147094.011 Monocyclic Benzene mg/kg 0.1 < 0.1 < 0.1 200 0 Aromatic Toluene mg/kg 0.1 <0.1 <0.1 200 0 <0.1 <0.1 200 Ethylbenzene 0.1 0 mg/kg m/p-xylene mg/kg 0.2 < 0.2 < 0.2 200 0 0.1 <0.1 <0.1 200 0 o-xylene mg/kg Polycyclic Naphthalene 0.1 <0.1 <0.1 200 0 mg/kg Surrogates Dibromofluoromethane (Surrogate) mg/kg 3.9 3.7 50 5 d4-1,2-dichloroethane (Surrogate) 46 44 50 5 mg/kg d8-toluene (Surrogate) 6.0 6.2 50 4 mg/kg Bromofluorobenzene (Surrogate) mg/kg 4.4 4.2 50 5 Totals Total Xylenes* 0.3 < 0.3 <0.3 200 0 mg/kg Total BTEX* 0.6 <0.6 <0.6 200 0 mg/kg SE147094.021 LB091692.025 Monocyclic Benzene mg/kg 0.1 <0.1 <0.1 200 0 Aromatic Toluene 0.1 <0.1 <0.1 200 0 mg/kg 0.1 <0.1 <0.1 200 0 Ethylbenzene mg/kg m/p-xylene mg/kg 0.2 < 0.2 <0.2 200 0 0.1 <0.1 <0.1 200 0 o-xylene mg/kg Naphthalene 0.1 <0.1 <0.1 200 Polycyclic 0 mg/kg Surrogates Dibromofluoromethane (Surrogate) mg/kg 3.6 3.6 50 1 d4-1,2-dichloroethane (Surrogate) 4.4 4.3 50 3 mg/kg 6.2 6.2 50 d8-toluene (Surrogate) mg/kg 1 Bromofluorobenzene (Surrogate) mg/kg 5.0 5.6 50 13 Totals Total Xylenes* mg/kg 0.3 <0.3 <0.3 200 0 Total BTEX 0.6 <0.6 <0.6 200 0 mg/kg SE147094.033 LB091693.014 <0.1 Monocyclic Benzene ma/ka 0.1 < 0.1 200 0 Aromatic Toluene 0.1 <0.1 < 0.1 200 0 mg/kg Ethylbenzene 0.1 <0.1 <0.1 200 0 mg/kg <0.2 200 m/p-xylene mg/kg 0.2 <0.2 0 o-xylene 0.1 <0.1 <0.1 200 0 mg/kg Polycyclic 0.1 <0.1 <0.1 200 0 Naphthalene mg/kg Surrogates Dibromofluoromethane (Surrogate) mg/kg 3.6 3.6 50 0 d4-1,2-dichloroethane (Surrogate) 4.1 4.2 50 2 mg/kg d8-toluene (Surrogate) 4.4 4.4 50 mg/kg 1 Bromofluorobenzene (Surrogate) mg/kg 5.0 5.3 50 5 Totals Total Xylenes* 0.3 <0.3 <0.3 200 0 mg/kg Total BTEX* 0.6 <0.6 <0.6 200 0 mg/kg SE147094.034 LB091693.016 Monocyclic Benzene mg/kg 0.1 <0.1 < 0.1 200 0 Aromatic Toluene 0.1 <0.1 <0.1 200 0 mg/kg 0.1 <0.1 <0.1 200 0 Ethylbenzene mg/kg 0.2 <0.2 <0.2 200 0 m/p-xvlene ma/ka o-xylene 0.1 <0.1 < 0.1 200 0 mg/kg <0.1 Polycyclic Naphthalene 0.1 <0.1 200 0 mg/kg Dibromofluoromethane (Surrogate) Surrogates mg/kg 4.0 3.9 50 3 d4-1,2-dichloroethane (Surrogate) 5.2 44 50 16 mg/kg d8-toluene (Surrogate) 5.6 4.7 50 17 mg/kg Bromofluorobenzene (Surrogate) ma/ka 5.1 4.6 50 10 Totals Total Xylenes* 0.3 < 0.3 < 0.3 200 0 mg/kg Total BTEX* 0.6 <0.6 <0.6 200 0 mg/kg Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433/AN434/AN410

Units Original Duplicate Criteria % RPD % Original Duplicate LOR Parameter SE147094.011 LB091692.014 TRH C6-C10 25 <25 <25 200 mg/kg 0 TRH C6-C9 20 <20 <20 200 0 mg/kg Surrogates Dibromofluoromethane (Surrogate) mg/kg 3.9 3.7 30 5 4.6 4.4 30 5 d4-1,2-dichloroethane (Surrogate) mg/kg d8-toluene (Surrogate) 6.0 6.2 30 4 mg/kg Bromofluorobenzene (Surrogate) mg/kg 4.4 4.2 30 5 VPH F Bands 0.1 <0.1 <0.1 200 0 Benzene (F0) mg/kg TRH C6-C10 minus BTEX (F1) 25 <25 <25 200 0 mg/kg SE147094.021 LB091692.025 TRH C6-C10 mg/kg 25 <25 <25 200 0 TRH C6-C9 20 <20 <20 mg/kg 200 0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

/olatile Petroleum	Hydrocarbons in Soi	il (continued)				Metho	d: ME-(AU)-[E	NVJAN433/A	N434/AN41
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE147094.021	LB091692.025	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.6	3.6	30	1
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.4	4.3	30	3
			d8-toluene (Surrogate)	mg/kg	-	6.2	6.2	30	1
			Bromofluorobenzene (Surrogate)	mg/kg	-	5.0	5.6	30	13
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE147094.033	LB091693.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.6	3.6	30	0
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.1	4.2	30	2
			d8-toluene (Surrogate)	mg/kg	-	4.4	4.4	30	1
			Bromofluorobenzene (Surrogate)	mg/kg	-	5.0	5.3	30	5
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE147094.034	LB091693.016		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.0	3.9	30	3
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.2	4.4	30	16
			d8-toluene (Surrogate)	mg/kg	-	5.6	4.7	30	17
			Bromofluorobenzene (Surrogate)	mg/kg	-	5.1	4.6	30	10
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Method: ME-(AU)-[ENV]AN312 Mercury in Soil Sample Numb Expected Criteria % Recovery % Parameter Units LOR Result LB091900.002 0.01 0.20 0.2 70 - 130 Mercury mg/kg 99 LB091901.002 Mercury mg/kg 0.01 0.21 0.2 70 - 130 106

Sample Numbe	er	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB091730.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	105
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	100
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	110
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	90
		Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	95
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	80
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	0.15	40 - 130	103
B091732.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	115
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	115
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	105
		Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	115
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	120
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	100
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	_	0.19	0.15	40 - 130	129
P Pesticides in			5 5				ME-(AU)-[ENV	
		Devenuetor	Linite		Decult			-
Sample Numbe	er -	Parameter	Units	LOR	Result	Expected	Criteria %	
B091730.002		Dichlorvos	mg/kg	0.5	1.8	2	60 - 140	90
		Diazinon (Dimpylate)	mg/kg	0.5	1.9	2	60 - 140	96
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.7	2	60 - 140	85
		Ethion	mg/kg	0.2	1.8	2	60 - 140	88
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	78
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	104
_B091732.002		Dichlorvos	mg/kg	0.5	2.0	2	60 - 140	98
		Diazinon (Dimpylate)	mg/kg	0.5	1.9	2	60 - 140	93
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.9	2	60 - 140	95
		Ethion	mg/kg	0.2	1.8	2	60 - 140	92
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	96
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	98
AH (Polynuclear	r Aromatic Hydroca	rbons) in Soil				1	Method: ME-(A	U)-[ENV]AI
Sample Numbe	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recover
_B091730.002		Naphthalene	mg/kg	0.1	4.8	4	60 - 140	119
		Acenaphthylene	mg/kg	0.1	4.5	4	60 - 140	113
		Acenaphthene	mg/kg	0.1	4.5	4	60 - 140	112
		Phenanthrene	mg/kg	0.1	4.7	4	60 - 140	118
		Anthracene	mg/kg	0.1	4.9	4	60 - 140	122
		Fluoranthene	mg/kg	0.1	4.8	4	60 - 140	119
		Pyrene	mg/kg	0.1	4.7	4	60 - 140	118
		Benzo(a)pyrene	mg/kg	0.1	4.4	4	60 - 140	111
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	88
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	78
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	104
		Naphthalene	mg/kg	0.1	4.5	4	60 - 140	112
_B091732.002		Naphinalene		0.1	4.6	4	60 - 140	114
B091732.002		Acenaphthylene	mg/kg	0.1				108
.B091732.002		•		0.1	4.3	4	60 - 140	
B091732.002		Acenaphthylene Acenaphthene	mg/kg	0.1	4.3	4		
B091732.002		Acenaphthylene Acenaphthene Phenanthrene	mg/kg mg/kg	0.1 0.1	4.3 4.4		60 - 140	111
.B091732.002		Acenaphthylene Acenaphthene Phenanthrene Anthracene	mg/kg mg/kg mg/kg	0.1 0.1 0.1	4.3 4.4 4.1	4	60 - 140 60 - 140	111 102
B091732.002		Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1	4.3 4.4 4.1 4.5	4 4 4	60 - 140 60 - 140 60 - 140	111 102 113
.B091732.002		Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1	4.3 4.4 4.1 4.5 4.4	4 4 4 4	60 - 140 60 - 140 60 - 140 60 - 140	111 102 113 110
.B091732.002	Surrogates	Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.3 4.4 4.1 4.5 4.4 4.2	4 4 4 4 4 4	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	111 102 113 110 106
B091732.002	Surrogates	Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.3 4.4 4.1 4.5 4.4 4.2 0.5	4 4 4 4 4 0.5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 40 - 130	111 102 113 110 106 98
.B091732.002	Surrogates	Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 -	4.3 4.4 4.1 4.5 4.4 4.2 0.5 0.5	4 4 4 4 0.5 0.5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 40 - 130 40 - 130	111 102 113 110 106 98 96
	Surrogates	Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.3 4.4 4.1 4.5 4.4 4.2 0.5	4 4 4 4 0.5 0.5 0.5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 40 - 130 40 - 130 40 - 130	111 102 113 110 106 98 96 98
3091732.002 3091732.002 3091732.002	Surrogates	Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 -	4.3 4.4 4.1 4.5 4.4 4.2 0.5 0.5	4 4 4 4 0.5 0.5 0.5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 40 - 130 40 - 130	111 102 113 110 106 98 96 98

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PCBs in Soil (continued)					Method:	ME-(AU)-[EN\	/JAN400/AN420
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB091730.002	Arochlor 1260	mg/kg	0.2	0.4	0.4	60 - 140	111
LB091732.002	Arochlor 1260	 mg/kg	0.2	0.5	0.4	60 - 140	115

Total Recoverable Metals in Soil by ICPOES

Total Recoverable	Metals in Soil by I	CPOES	 				Method:	ME-(AU)-[EN	/JAN040/AN3
Sample Number	•	Parameter		Units	LOR	Result	Expected	Criteria %	Recovery 9
LB091836.002		Arsenic, As		mg/kg	3	48	50	80 - 120	97
		Cadmium, Cd		mg/kg	0.3	49	50	80 - 120	97
		Chromium, Cr		mg/kg	0.3	48	50	80 - 120	96
		Copper, Cu		mg/kg	0.5	49	50	80 - 120	98
		Lead, Pb		mg/kg	1	49	50	80 - 120	97
		Nickel, Ni		mg/kg	0.5	48	50	80 - 120	96
		Zinc, Zn		mg/kg	0.5	50	50	80 - 120	99
LB091837.002		Arsenic, As		mg/kg	3	49	50	80 - 120	99
		Cadmium, Cd		mg/kg	0.3	49	50	80 - 120	99
		Chromium, Cr		mg/kg	0.3	48	50	80 - 120	96
		Copper, Cu		mg/kg	0.5	50	50	80 - 120	99
		Lead, Pb		mg/kg	1	49	50	80 - 120	98
		Nickel, Ni		mg/kg	0.5	49	50	80 - 120	98
		Zinc, Zn		mg/kg	0.5	50	50	80 - 120	101
race Metals (Diss	olved) in Water by	ICPMS					1	Method: ME-(A	U)-[ENV]AN3
Sample Number		Parameter		Units	LOR	Result	Expected	Criteria %	Recovery 9
LB091699.002		Arsenic, As		µg/L	1	19	20	80 - 120	96
		Cadmium, Cd		µg/L	0.1	20	20	80 - 120	102
		Chromium, Cr		µg/L	1	21	20	80 - 120	104
		Copper, Cu		µg/L	1	21	20	80 - 120	107
		Lead, Pb		µg/L	1	21	20	80 - 120	106
		Nickel, Ni		µg/L	1	21	20	80 - 120	105
		Zinc, Zn		µg/L	5	21	20	80 - 120	106
RH (Total Recove	erable Hydrocarbo	ns) in Soil						Method: ME-(A	U)-[ENV]AN4
Sample Number		Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB091730.002		TRH C10-C14		mg/kg	20	41	40	60 - 140	103
		TRH C15-C28		mg/kg	45	<45	40	60 - 140	95
		TRH C29-C36		mg/kg	45	<45	40	60 - 140	78
	TRH F Bands	TRH >C10-C16 (F2)		mg/kg	25	40	40	60 - 140	100
		TRH >C16-C34 (F3)		mg/kg	90	<90	40	60 - 140	85
		TRH >C34-C40 (F4)		mg/kg	120	<120	20	60 - 140	75
LB091732.002		TRH C10-C14		mg/kg	20	43	40	60 - 140	108
		TRH C15-C28		mg/kg	45	<45	40	60 - 140	103
		TRH C29-C36		mg/kg	45	<45	40	60 - 140	95
	TRH F Bands	TRH >C10-C16 (F2)		mg/kg	25	43	40	60 - 140	108
		TRH >C16-C34 (F3)		mg/kg	90	<90	40	60 - 140	105
		TRH >C34-C40 (F4)		mg/kg	120	<120	20	60 - 140	85
PH (Total Becow	erable Hydrocarbo			99	.20			Method: ME-(A	
	erable riyurucarbol	is) in water					· · · · ·	Neu100. IVI≧-(A	0)-[[[] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB091733.002		TRH C10-C14	µg/L	50	1300	1200	60 - 140	105
		TRH C15-C28	µg/L	200	1400	1200	60 - 140	117
		TRH C29-C36	µg/L	200	1400	1200	60 - 140	121
	TRH F Bands	TRH >C10-C16 (F2)	μg/L	60	1400	1200	60 - 140	114
		TRH >C16-C34 (F3)	μg/L	500	1500	1200	60 - 140	121
		TRH >C34-C40 (F4)	μg/L	500	690	600	60 - 140	115
VOC's in Soil						Method:		//ANA33/ANA34

VUC 5 III 30II						Meulou.	ME-(AO)-[EN	114144221414424
Sample Num	ber	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB091692.002	Monocyclic	Benzene	mg/kg	0.1	2.6	2.9	60 - 140	90
	Aromatic	Toluene	mg/kg	0.1	2.4	2.9	60 - 140	81
		Ethylbenzene	mg/kg	0.1	2.2	2.9	60 - 140	74
		m/p-xylene	mg/kg	0.2	4.0	5.8	60 - 140	69
		o-xylene	mg/kg	0.1	1.9	2.9	60 - 140	67
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.7	5	60 - 140	75

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

/OC's in Soil (cor		Devenue	1 bette		Desult		ME-(AU)-[ENV	
Sample Numbe		Parameter	Units	LOR	Result	Expected	Criteria %	
_B091692.002	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.4	5	60 - 140	87
		d8-toluene (Surrogate)	mg/kg	-	5.5	5	60 - 140	110
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.4	5	60 - 140	87
_B091693.002	Monocyclic	Benzene	mg/kg	0.1	2.4	2.9	60 - 140	82
	Aromatic	Toluene	mg/kg	0.1	2.3	2.9	60 - 140	79
		Ethylbenzene	mg/kg	0.1	2.3	2.9	60 - 140	80
		m/p-xylene	mg/kg	0.2	4.8	5.8	60 - 140	82
		o-xylene	mg/kg	0.1	2.0	2.9	60 - 140	70
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.9	5	60 - 140	97
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.8	5	60 - 140	95
		d8-toluene (Surrogate)	mg/kg	-	5.1	5	60 - 140	102
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.5	5	60 - 140	89
OCs in Water						Method:	ME-(AU)-[ENV	<mark>]AN433/A</mark> N
Sample Numbe	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB091916.002	Monocyclic	Benzene	µg/L	0.5	52	45.45	60 - 140	114
	Aromatic	Toluene	µg/L	0.5	52	45.45	60 - 140	114
		Ethylbenzene	μg/L	0.5	52	45.45	60 - 140	114
		m/p-xylene	µg/L	1	100	90.9	60 - 140	113
		o-xylene	µg/L	0.5	52	45.45	60 - 140	114
	Surrogates	Dibromofluoromethane (Surrogate)	µg/L	_	4.5	5	60 - 140	90
		d4-1,2-dichloroethane (Surrogate)	µg/L	_	4.9	5	60 - 140	98
			10					
		d8-toluene (Surrogate)	ua/L	-	5.0	5	60 - 140	101
		d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	μg/Lμα/L	-		5	60 - 140 60 - 140	101 92
/olatile Petroleum	Hvdrocarbons in S	Bromofluorobenzene (Surrogate)	μg/L μg/L	-	4.6	5	60 - 140	92
) Hydrocarbons in S	Bromofluorobenzene (Surrogate)	µg/L	-	4.6 N	5 Nethod: ME-(AL	60 - 140 J)-[ENV]AN43 3	92 /AN434/AN
Sample Numbe		Bromofluorobenzene (Surrogate) Soll Parameter	μg/L Units	LOR	4.6 N Result	5 Nethod: ME-(AL Expected	60 - 140 J <mark>)-[ENV]AN43</mark> 3 Criteria %	92 /AN434/AN Recovery
'olatile Petroleum Sample Number LB091692.002		Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10	μg/L Units mg/kg	- LOR 25	4.6 ► Result <25	5 Aethod: ME-(AL Expected 24.65	60 - 140 J)-[ENV]AN433 Criteria % 60 - 140	92 /AN434/AN Recovery 89
Sample Numbe	r	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9	μg/L Units mg/kg mg/kg	LOR 25 20	4.6 Result <25 <20	5 Nethod: ME-(AL Expected 24.65 23.2	60 - 140 J)-[ENV]AN433 Criteria % 60 - 140 60 - 140	92 /AN434/AN Recovery 89 74
Sample Numbe		Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	μg/L Units mg/kg mg/kg mg/kg	LOR 25 20	4.6 Result <25 <20 3.7	5 Aethod: ME-(AL Expected 24.65 23.2 5	60 - 140 J)-[ENV]AN433 Criteria % 60 - 140 60 - 140 60 - 140	92 AN434/AN Recovery 89 74 75
Sample Numbe	r	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	μg/L Units mg/kg mg/kg mg/kg mg/kg	LOR 25 20	4.6 Result <25 <20 3.7 4.4	5 Aethod: ME-(AL Expected 24.65 23.2 5 5 5	60 - 140 J)-[ENV]AN433 Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	92 /AN434/AN Recovery 89 74 75 87
Sample Numbe	r	Bromofluorobenzene (Surrogate) Soli Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 25 20 - - -	4.6 Result <25 <20 3.7 4.4 5.5	5 Aethod: ME-(AL 24.65 23.2 5 5 5 5	60 - 140 J)-[ENV]AN433 Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	92 XAN434/AN Recovery 89 74 75 87 110
Sample Numbe	Surrogates	Bromofluorobenzene (Surrogate) Soli Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 25 20 - - - -	4.6 Result <25 <20 3.7 4.4 5.5 4.4	5 Aethod: ME-(AL Expected 24.65 23.2 5 5 5 5 5 5 5 5	60 - 140 J)-[ENV]AN433 Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	92 XAN434/AN Recovery 89 74 75 87 110 87
Sample Number	r	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1)	μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 25 20 - - - - 25	4.6 Result <25 <20 3.7 4.4 5.5 4.4 <25	5 Aethod: ME-(AL Expected 24.65 23.2 5 5 5 5 5 7.25	60 - 140 J)-[ENV]AN433 Criteria % 60 - 140 60 - 140	92 Recovery 89 74 75 87 110 87 123
Sample Numbe	Surrogates	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) TRH C6-C10	μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 25 20 - - - - 25 25 25	4.6 Result <25 <20 3.7 4.4 5.5 4.4 <25 <25 <25	5 Aethod: ME-(AL Expected 24.65 23.2 5 5 5 5 7.25 24.65	60 - 140 J)-[ENV]AN433 Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	92 Recovery 89 74 75 87 110 87 123 94
Sample Number	Surrogates	Bromofluorobenzene (Surrogate) Coll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9	μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 25 20 - - - - 25	4.6 Result <25 <20 3.7 4.4 5.5 4.4 <25 <25 <25 20	5 Aethod: ME-(AL Expected 24.65 23.2 5 5 5 5 5 7.25 24.65 23.2	60 - 140 J)-[ENV]AN433 Criteria % 60 - 140 60 - 140	92 VAN434/AN Recovery 89 74 75 87 110 87 123 94 87
Sample Number	Surrogates	Bromofluorobenzene (Surrogate) Coll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C10 Dibromofluoromethane (Surrogate)	μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 25 20 - - - 25 25 20 -	4.6 Result <25 <20 3.7 4.4 5.5 4.4 <25 <25 <25 20 4.9	5 Aethod: ME-(AL Expected 24.65 23.2 5 5 5 7.25 24.65 23.2 5 7.25 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 J)-[ENV]AN433 Criteria % 60 - 140 60 - 140	92 XAN434/AN Recovery 89 74 75 87 110 87 123 94 87 97
Sample Number	Surrogates	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 25 20 - - - - 25 25 20 - - -	4.6 Result <25 <20 3.7 4.4 5.5 4.4 <25 <25 20 4.9 4.8	5 Aethod: ME-(AL Expected 24.65 23.2 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 J)-[ENV]AN433 Criteria % 60 - 140 60 - 140	92 VAN434/AN Recovery 89 74 75 87 110 87 123 94 87 97 95
Sample Number	Surrogates	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C10 TRH C6-C10 Dibromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 25 20 - - - 25 25 20 - - - - - - 25 20 - - -	4.6 Result <25 <20 3.7 4.4 5.5 4.4 <25 <25 20 4.9 4.8 5.1	5 Aethod: ME-(AL Expected 24.65 23.2 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140)-[ENV]AN433 Criteria % 60 - 140 60 - 140	92 XAN434/AN Recovery 89 74 75 87 110 87 123 94 87 97 95 102
Sample Number	Surrogates VPH F Bands Surrogates	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C10 TRH C6-C10 d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	μg/L mg/kg	- 25 20 - - - 25 25 25 20 - - - - - - - - - - - - - - - - - -	4.6 Result <25 <20 3.7 4.4 5.5 4.4 <25 <25 20 4.9 4.8 5.1 4.5	5 Aethod: ME-(AL Expected 24.65 23.2 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140)-[ENV]AN433 Criteria % 60 - 140 60 - 140	92 VAN434/AN Recovery 89 74 75 87 110 87 123 94 87 97 95 102 89
Sample Number	Surrogates	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C10 TRH C6-C10 Dibromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 25 20 - - - 25 25 20 - - - - - - 25 20 - - -	4.6 Result <25 <20 3.7 4.4 5.5 4.4 <25 <25 20 4.9 4.8 5.1	5 Aethod: ME-(AL Expected 24.65 23.2 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140)-[ENV]AN433 Criteria % 60 - 140 60 - 140	92 VAN434/AN Recovery 89 74 75 87 110 87 123 94 87 97 95 102
Sample Number LB091692.002	Surrogates VPH F Bands Surrogates	Bromofluorobenzene (Surrogate) Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 d4-1,2-dichloroethane (Surrogate) TRH C6-C10 TRH C6-C	μg/L mg/kg	- 25 20 - - - 25 25 25 20 - - - - - - - - - - - - - - - - - -	4.6 Result <25 <20 3.7 4.4 5.5 4.4 <25 <25 20 4.9 4.8 5.1 4.5 <25	5 Aethod: ME-(AL Expected 24.65 23.2 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140)-[ENV]AN433 Criteria % 60 - 140 60 - 140	92 Recovery 89 74 75 87 110 87 123 94 87 97 95 102 89 128
Sample Number LB091692.002 LB091693.002	Surrogates VPH F Bands Surrogates VPH F Bands	Bromofluorobenzene (Surrogate) Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 d4-1,2-dichloroethane (Surrogate) TRH C6-C10 TRH C6-C	μg/L mg/kg	- 25 20 - - - 25 25 25 20 - - - - - - - - - - - - - - - - - -	4.6 Result <25 <20 3.7 4.4 5.5 4.4 <25 <25 20 4.9 4.8 5.1 4.5 <25	5 Aethod: ME-(AL 24.65 23.2 5 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140)-[ENV]AN433 Criteria % 60 - 140 60 - 140	92 Recovery 89 74 75 87 110 87 123 94 87 97 95 102 89 128
Sample Number LB091692.002	Surrogates VPH F Bands Surrogates VPH F Bands	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) TRH C6-C10 minus BTEX (F1) Vater	μg/L Units mg/kg	- 25 20 - - - 25 25 20 - - - - 25 25	4.6 Result <25 <20 3.7 4.4 5.5 4.4 <25 <25 20 4.9 4.8 5.1 4.5 <25 20 4.9 4.8 5.1 4.5 <25 20 4.9 4.8 5.1 4.5 <25 20 4.8 5.1 4.5 <25 20 4.8 5.1 4.5 5.1 4.5 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5	5 Aethod: ME-(AL 24.65 23.2 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140)-[ENV]AN433 Criteria % 60 - 140 60 - 140 80 - 140	92 XAN434/AN Recovery 89 74 75 87 110 87 123 94 87 97 95 102 89 128 XAN434/AN
Sample Number _B091692.002 _B091693.002 _B091693.002	Surrogates VPH F Bands Surrogates VPH F Bands	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) TRH C6-C10 Yetar Parameter	μg/L mg/kg	- 25 20 - - - 25 25 20 - - - - 25 25 20 - - 25 25	4.6 Result <25 <20 3.7 4.4 5.5 4.4 <25 <25 20 4.9 4.8 5.1 4.5 <25 20 4.9 4.8 5.1 4.5 <25 20 8 8 8 8 8 8 8 8 8 8 8 8 8	5 Aethod: ME-(AL Expected 24.65 23.2 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140)-[ENV]AN433 Criteria % 60 - 140 60 - 140 80 - 140 60 - 140 80 - 140	92 XAN434/AN Recovery 89 74 75 87 110 87 123 94 87 97 95 102 89 128 XAN434/AN Recovery
Sample Number _B091692.002 _B091693.002 _B091693.002	Surrogates VPH F Bands Surrogates VPH F Bands	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) TRH C6-C10	μg/L mg/kg	- 25 20 - - - 25 25 20 - - - 25 25 20 - - 25 25 20 50	4.6 Result <25 <20 3.7 4.4 5.5 4.4 <25 <25 20 4.9 4.8 5.1 4.5 <25 20 4.9 4.8 5.1 4.5 <25 20 8 8 8 950	5 Aethod: ME-(AL Expected 24.65 23.2 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140)-[ENV]AN433 Criteria % 60 - 140 60 - 140 Criteria % 60 - 140	92 XAN434/AN Recovery 89 74 75 87 110 87 123 94 87 97 95 102 89 128 XAN434/AN Recovery 101
Sample Number _B091692.002 _B091693.002 _B091693.002	VPH F Bands VPH F Bands Surrogates VPH F Bands VPH F Bands	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) TRH C6-C10 TRH C6-C10 minus BTEX (F1) Vator Parameter TRH C6-C10 TRH C6-C10 TRH C6-C10	μg/L Units mg/kg	- 25 20 - - - 25 25 20 - - - 25 25 20 - - 25 25 20 - - 25 20 - - 50 40	4.6 Result <25 <20 3.7 4.4 5.5 4.4 <25 <25 20 4.9 4.8 5.1 4.5 <25 20 4.9 4.8 5.1 4.5 <25 N Result 950 780	5 Aethod: ME-(AL Expected 24.65 23.2 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140)-[ENV]AN433 Criteria % 60 - 140 60 - 140 Criteria % 60 - 140 60 - 140	92 XAN434/AN Recovery 89 74 75 87 110 87 123 94 87 97 95 102 89 128 XAN434/AN Recovery 101 95
Sample Number _B091692.002 _B091693.002 _B091693.002	VPH F Bands VPH F Bands Surrogates VPH F Bands VPH F Bands	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10 TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	μg/L Units mg/kg mg/kg </td <td>- 25 20 - - - 25 25 20 - - - 25 25 20 - - 25 25 20 - - 25 20 - - 50 40 -</td> <td>4.6 Result <25 <20 3.7 4.4 5.5 4.4 <25 <25 20 4.9 4.8 5.1 4.5 <25 20 4.9 4.8 5.1 4.5 <25 20 4.9 4.8 5.1 4.5 <25 20 8 7 8 8 8 5 1 4.5 5 8 8 8 8 8 8 8 8 8 8 8 8 8</td> <td>5 Aethod: ME-(AL Expected 24.65 23.2 5 5 7.25 24.65 23.2 5 5 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5</td> <td>60 - 140)-[ENV]AN433 Criteria % 60 - 140 60 - 140 00 - 140</td> <td>92 XAN434/AN Recovery 89 74 75 87 110 87 123 94 87 95 102 89 128 XAN434/AN Recovery 101 95 90</td>	- 25 20 - - - 25 25 20 - - - 25 25 20 - - 25 25 20 - - 25 20 - - 50 40 -	4.6 Result <25 <20 3.7 4.4 5.5 4.4 <25 <25 20 4.9 4.8 5.1 4.5 <25 20 4.9 4.8 5.1 4.5 <25 20 4.9 4.8 5.1 4.5 <25 20 8 7 8 8 8 5 1 4.5 5 8 8 8 8 8 8 8 8 8 8 8 8 8	5 Aethod: ME-(AL Expected 24.65 23.2 5 5 7.25 24.65 23.2 5 5 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140)-[ENV]AN433 Criteria % 60 - 140 60 - 140 00 - 140	92 XAN434/AN Recovery 89 74 75 87 110 87 123 94 87 95 102 89 128 XAN434/AN Recovery 101 95 90
Sample Number _B091692.002 _B091693.002 _B091693.002	VPH F Bands VPH F Bands Surrogates VPH F Bands VPH F Bands	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10	μg/L Units mg/kg mg/kg </td <td>- LOR 25 20 - - 25 25 20 - - - 25 25 20 - - - 25 20 - - - - - - - - - - - - -</td> <td>4.6 N Result <25 <20 3.7 4.4 5.5 4.4 <25 <25 20 4.9 4.8 5.1 4.5 <25 20 4.9 4.9 4.5 <25 N Result 950 780 4.5 4.9</td> <td>5 Aethod: ME-(AL Expected 24.65 23.2 5 5 7.25 24.65 23.2 5 5 5 5 5 7.25 Aethod: ME-(AL Expected 946.63 818.71 5 5 5 5 5 5 5 5 5 5 5 5 5</td> <td>60 - 140)-[ENV]AN433 Criteria % 60 - 140 60 - 140 90 - 140 60 - 140 00 - 140</td> <td>92 XAN434/AN Recovery 89 74 75 87 110 87 123 94 87 95 102 89 128 XAN434/AN Recovery 101 95 90 98</td>	- LOR 25 20 - - 25 25 20 - - - 25 25 20 - - - 25 20 - - - - - - - - - - - - -	4.6 N Result <25 <20 3.7 4.4 5.5 4.4 <25 <25 20 4.9 4.8 5.1 4.5 <25 20 4.9 4.9 4.5 <25 N Result 950 780 4.5 4.9	5 Aethod: ME-(AL Expected 24.65 23.2 5 5 7.25 24.65 23.2 5 5 5 5 5 7.25 Aethod: ME-(AL Expected 946.63 818.71 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140)-[ENV]AN433 Criteria % 60 - 140 60 - 140 90 - 140 60 - 140 00 - 140	92 XAN434/AN Recovery 89 74 75 87 110 87 123 94 87 95 102 89 128 XAN434/AN Recovery 101 95 90 98

Method: ME-(AU)-[ENV]AN400/AN420

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolve	d) in Water					Method: ME	E-(AU)-[ENV	JAN311/AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE147094.031	LB091971.004	Mercury	mg/L	0.0001	0.0083	<0.0001	0.008	104

Mercury in Soil

Mercury in Soil						Metho	od: ME-(AU	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE147082.020	LB091900.004	Mercury	mg/kg	0.01	0.15	0.01739502233	0.2	68 ④
SE147094.019	LB091901.004	Mercury	mg/kg	0.01	0.21	0.02	0.2	95

OC Pesticides in Soil

Alpha BHC mg/kg 0.1 <0.1	C Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
Lindane mg/kg 0.1 <0.1	E147094.001	LB091730.026		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	-	-
Heptachlor mg/kg 0.1 4.0.1 0.2 110 Advin mg/kg 0.1 <0.1				Alpha BHC	mg/kg	0.1	<0.1	-	-
Adrin mg/kg 0.1 <0.1				Lindane	mg/kg	0.1	<0.1	-	-
Beta BHC mg/kg 0.1 <0.1 - Delta BHC mg/kg 0.1 <0.1				Heptachlor	mg/kg	0.1	<0.1	0.2	110
Delta BHC mg/kg 0.1 <0.1 0.2 115 Heptachlor epoxide mg/kg 0.1 <0.1				Aldrin	mg/kg	0.1	<0.1	0.2	105
Heptachlor epoxide mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <td></td> <td></td> <td></td> <td>Beta BHC</td> <td>mg/kg</td> <td>0.1</td> <td><0.1</td> <td>-</td> <td>-</td>				Beta BHC	mg/kg	0.1	<0.1	-	-
o.p ² -DDE mg/kg 0.1 <0.1				Delta BHC	mg/kg	0.1	<0.1	0.2	115
Apha Endosulfan mg/kg 0.2 <0.2				Heptachlor epoxide	mg/kg	0.1	<0.1	-	-
Gamma Chlordane mg/kg 0.1 <0.1 - Alpha Chlordane mg/kg 0.1 <0.1				o,p'-DDE	mg/kg	0.1	<0.1	-	-
Alpha Chlordane mg/kg 0.1 <0.1				Alpha Endosulfan	mg/kg	0.2	<0.2	-	-
trans-Nonachlor mg/kg 0.1 <0.1 - p,p'-DDE mg/kg 0.1 <0.1				Gamma Chlordane	mg/kg	0.1	<0.1	-	-
p.p ¹ -DDE mg/kg 0.1 <0.1				Alpha Chlordane	mg/kg	0.1	<0.1	-	-
Dieldrin mg/kg 0.2 <0.2				trans-Nonachlor	mg/kg	0.1	<0.1	-	-
Endrin mg/kg 0.2 <0.2 0.2 0.2 105 o,p'-DDD mg/kg 0.1 <0.1				p,p'-DDE	mg/kg	0.1	<0.1	-	-
o.p'-DDD mg/kg 0.1 <0.1				Dieldrin	mg/kg	0.2	<0.2	0.2	98
o.p ¹ -DDT mg/kg 0.1 <0.1				Endrin	mg/kg	0.2	<0.2	0.2	105
Beta Endosulfan mg/kg 0.2 <0.2 - p,p'-DD mg/kg 0.1 <0.1				o,p'-DDD	mg/kg	0.1	<0.1	-	-
p.p ¹ -DDD mg/kg 0.1 <0.1				o,p'-DDT	mg/kg	0.1	<0.1	-	-
p.p ¹ -DDT mg/kg 0.1 <0.1 0.2 90 Endosulfan sulphate mg/kg 0.1 <0.1				Beta Endosulfan	mg/kg	0.2	<0.2	-	-
Endosulfan sulphate mg/kg 0.1 <0.1 - - Endrin Aldehyde mg/kg 0.1 <0.1				p,p'-DDD	mg/kg	0.1	<0.1	-	-
Endrin Aldehyde mg/kg 0.1 <0.1 - Methoxychlor mg/kg 0.1 <0.1				p,p'-DDT	mg/kg	0.1	<0.1	0.2	90
Methoxychlor mg/kg 0.1 <0.1 - - Endrin Ketone mg/kg 0.1 <0.1				Endosulfan sulphate	mg/kg	0.1	<0.1	-	-
Endrin Ketone mg/kg 0.1 <0.1 - - Isodrin mg/kg 0.1 <0.1				Endrin Aldehyde	mg/kg	0.1	<0.1	-	-
Isodrin mg/kg 0.1 <0.1 - - Mirex mg/kg 0.1 <0.1				Methoxychlor	mg/kg	0.1	<0.1	-	-
Mirex mg/kg 0.1 <0.1 - - Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) mg/kg - 0.16 - 90				Endrin Ketone	mg/kg	0.1	<0.1	-	-
Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) mg/kg - 0.16 - 90				Isodrin	mg/kg	0.1	<0.1	-	-
		_		Mirex	mg/kg	0.1	<0.1	-	-
Pesticides in Soil Method: ME-(AU)-[ENV].			Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	-	90
	P Pesticides in	Soil						Method: N	VIE-(AU)-[ENV]

QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE147094.001	LB091730.026		Dichlorvos	mg/kg	0.5	<0.5	2	96
			Dimethoate	mg/kg	0.5	<0.5	-	-
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	2	100
			Fenitrothion	mg/kg	0.2	<0.2	-	-
			Malathion	mg/kg	0.2	<0.2	-	-
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	2	107
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	-	-
			Bromophos Ethyl	mg/kg	0.2	<0.2	-	-
			Methidathion	mg/kg	0.5	<0.5	-	-
			Ethion	mg/kg	0.2	<0.2	2	90
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	-	-
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	-	80
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	-	106
SE147094.025	LB091732.022		Dichlorvos	mg/kg	0.5	<0.5	2	100
			Dimethoate	mg/kg	0.5	<0.5	-	-
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	2	110
			Fenitrothion	mg/kg	0.2	<0.2	-	-
			Malathion	mg/kg	0.2	<0.2	-	-
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	2	123

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OP Pesticides in Soil (continued) Method: ME-(AU)-[ENV]AN400/AN420 Spike Recovery% QC Sample Sample Numb Parameter Units LOR Original SE147094.025 LB091732.022 Parathion-ethyl (Parathion) mg/kg 0.2 <0.2 Bromophos Ethyl mg/kg 0.2 <0.2 <0.5 Methidathion 0.5 mg/kg Ethion mg/kg 0.2 < 0.2 2 124 Azinphos-methyl (Guthion) 0.2 <0.2 mg/kg Surrogates 2-fluorobiphenyl (Surrogate) 0.4 90 mg/kg d14-p-terphenyl (Surrogate) mg/kg 0.5 110 PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN420 QC Sample Sample Number Units Original Spike Recovery% Parameter LOR SE147094.001 LB091730.026 Naphthalene 0.1 119 mg/kg <0.1 4 2-methylnaphthalene 0.1 <0.1 mg/kg 1-methylnaphthalene mg/kg 0.1 <0.1 Acenaphthylene 0.1 <0.1 4 114 mg/kg Acenaphthene mg/kg 0.1 < 0.1 4 112 Fluorene mg/kg 0.1 <0.1 Phenanthrene 0.1 117 <0.1 4 mg/kg Anthracene mg/kg 0.1 <0.1 4 118 0.1 <0.1 127 Fluoranthene mg/kg 4 Pyrene 0.1 <0.1 4 116 mg/kg Benzo(a)anthracene mg/kg 0.1 < 0.1 Chrysene mg/kg 0.1 <0.1 Benzo(b&j)fluoranthene 0.1 <0.1 mg/kg --Benzo(k)fluoranthene mg/kg 0.1 <0.1 0.1 <0.1 123 Benzo(a)pyrene mg/kg 4 Indeno(1,2,3-cd)pyrene 0.1 <0.1 mg/kg Dibenzo(a&h)anthracene mg/kg 0.1 <0.1 Benzo(ghi)perylene mg/kg 0.1 <0.1 Carcinogenic PAHs, BaP TEQ <LOR=0* 0.2 <0.2 TEQ -Carcinogenic PAHs, BaP TEQ <LOR=LOR* TEQ (mg/kg) 0.3 < 0.3 Carcinogenic PAHs, BaP TEQ <LOR=LOR/2* TEQ (mg/kg) 0.2 <0.2 Total PAH (18) 0.8 <0.8 mg/kg Surrogates d5-nitrobenzene (Surrogate) mg/kg 0.5 100 2-fluorobiphenyl (Surrogate) mg/kg 0.4 80 106 d14-p-terphenyl (Surrogate) 0.5 mg/kg SE147094.025 LB091732.022 Naphthalene mg/kg 0.1 < 0.1 4 116 2-methylnaphthalene 0.1 <0.1 mg/kg 1-methylnaphthalene 0.1 <0.1 mg/kg Acenaphthylene mg/kg 0.1 <0.1 4 118 Acenaphthene 0.1 <0.1 113 mg/kg 4 Fluorene 0.1 <0.1 mg/kg Phenanthrene mg/kg 0.1 < 0.1 4 120 Anthracene 0.1 <0.1 4 111 mg/kg Fluoranthene 0.1 <0.1 4 122 mg/kg Pyrene mg/kg 0.1 <0.1 4 120 <0.1 Benzo(a)anthracene mg/kg 0.1 Chrysene 0.1 <0.1 mg/kg Benzo(b&i)fluoranthene mg/kg 0.1 < 0.1 Benzo(k)fluoranthene 0.1 <0.1 mg/kg Benzo(a)pyrene 0.1 <0.1 4 109 mg/kg < 0.1 Indeno(1,2,3-cd)pyrene mg/kg 0.1 Dibenzo(a&h)anthracene 0.1 <0.1 mg/kg 0.1 <0.1 Benzo(ghi)perylene mg/kg -Carcinogenic PAHs, BaP TEQ <LOR=0* TEQ 0.2 <0.2 -Carcinogenic PAHs, BaP TEQ <LOR=LOR* TEQ (mg/kg) 0.3 <0.3 Carcinogenic PAHs, BaP TEQ <LOR=LOR/2* 0.2 <0.2 TEQ (mg/kg) Total PAH (18) mg/kg 0.8 < 0.8 Surrogates d5-nitrobenzene (Surrogate) 0.5 104 mg/kg 0.4 90 2-fluorobiphenyl (Surrogate) mg/kg d14-p-terphenyl (Surrogate) mg/kg 0.5 110

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PCBs in Soll							Method: ME	E-(AU)-[ENV]/	an400/AN
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%	
SE147094.001	LB091730.027		Arochlor 1016	mg/kg	0.2	<0.2	-	-	1
			Arochlor 1221	mg/kg	0.2	<0.2	-	-	1
			Arochlor 1232	mg/kg	0.2	<0.2	_	-	
			Arochlor 1242	mg/kg	0.2	<0.2	_	-	
			Arochlor 1248	mg/kg	0.2	<0.2	_		
						<0.2	-	-	-
			Arochlor 1254	mg/kg	0.2				-
			Arochlor 1260	mg/kg	0.2	<0.2	0.4	116	-
			Arochlor 1262	mg/kg	0.2	<0.2	-	-	-
			Arochlor 1268	mg/kg	0.2	<0.2	-	-	-
			Total PCBs (Arochlors)	mg/kg	1	<1	-	-	_
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	-	93	J
otal Recoverabl	le Metals in Soil by ICF	POES					Method: ME	E-(AU)-[ENV]/	AN040/A
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recov
SE147082.020	LB091836.004		Arsenic, As	mg/kg	3	43	5.35787041746	50	74
			Cadmium, Cd	mg/kg	0.3	38	0.38062517857	50	76
			Chromium, Cr	mg/kg	0.3	66	31.7612185332€	50	69 🤅
			Copper, Cu	mg/kg	0.5	57	17.19735094703	50	80
			Lead, Pb	mg/kg	1	50	15.89548550529	50	69 (
			Nickel, Ni	mg/kg	0.5	55	20.76486454442	50	68 🤅
			Zinc, Zn	mg/kg	0.5	69	32.97915445142	50	72
race Metals (Di	ssolved) in Water by I	CPMS					Met	hod: ME-(AU)	
QC Sample			Deveneter	Units	LOR	Deeult	Original		
•	Sample Number		Parameter			Result	Ŭ	Spike	Recov
SE147040.018	LB091699.004		Arsenic, As	µg/L	1	19	<1	20	96
			Cadmium, Cd	µg/L	0.1	21	<0.1	20	103
			Chromium, Cr	μg/L	1	21	<1	20	106
			Copper, Cu	μg/L	1	36	14	20	107
			Lead, Pb	μg/L	1	22	<1	20	107
			Nickel, Ni	µg/L	1	22	<1	20	108
			Zinc, Zn	μg/L	5	34	14	20	102
RH (Total Reco	overable Hydrocarbons	s) in Soil					Met	hod: ME-(AU)	
QC Sample	Sample Number	,	Parameter	Units	LOR	Original	Spike	Recovery%	
SE147094.001	LB091730.027		TRH C10-C14	mg/kg	20	<20	40	108	-
			TRH C15-C28	mg/kg	45	<45	40	100	-
				mg/kg	45	<45	40	95	
			TRH C29-C36	0.0			-		1
			TRH C37-C40	mg/kg	100	<100	-	-	
							-		_
			TRH C37-C40	mg/kg	100	<100	-	-	
		TRH F Bands	TRH C37-C40 TRH C10-C36 Total	mg/kg mg/kg	100 110	<100 <110	-	-	-
		TRH F Bands	TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total	mg/kg mg/kg mg/kg mg/kg	100 110 210	<100 <110 <210	-		-
		TRH F Bands	TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene	mg/kg mg/kg mg/kg mg/kg mg/kg	100 110 210 25 25	<100 <110 <210 <25 <25	- - - 40 -	- - - 105 -	-
		TRH F Bands	TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C10-C34 (F3)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	100 110 210 25 25 90	<100 <110 <210 <25 <25 <90	-	- - - 105	-
SE147094 023	I B001732 023	TRH F Bands	TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	100 110 210 25 25 90 120	<100 <110 <210 <25 <25 <90 <120	- - 40 - 40 -	- - 105 - 98 -	-
SE147094.023	LB091732.023	TRH F Bands	TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH >C10-C14	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	100 110 210 25 25 90 120 20	<100 <110 <210 <25 <25 <90 <120 <20	- - 40 - 40 - 40 - 40	- - 105 - 98 - 105	-
SE147094.023	LB091732.023	TRH F Bands	TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	100 110 210 25 25 90 120 20 45	<100 <110 <210 <25 <25 <90 <120 <20 <45	- - 40 - 40 - 40 - 40 40	- - 105 - 98 - 105 100	
SE147094.023	LB091732.023	TRH F Bands	TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	100 110 25 25 90 120 20 45 45	<100 <110 <210 <25 <25 <90 <120 <20 <45 <45	- - 40 - 40 - 40 40 40 40	- - 105 - 98 - 105 100 85	· · · · ·
SE147094.023	LB091732.023	TRH F Bands	TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	100 110 210 25 25 90 120 20 45 45 45 100	<100 <110 <220 <25 <90 <120 <20 <45 <45 <100	- - 40 - 40 - 40 40 40 40 40 -	- - 105 - 98 - 105 100 85 -	
SE147094.023	LB091732.023	TRH F Bands	TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH c10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total	mg/kg	100 110 25 25 90 120 20 45 45 45 100 110	<100 <110 <220 <25 <90 <120 <20 <45 <45 <100 <110	- - 40 - 40 - 40 40 40 40 40 - -	- - 105 - 98 - 105 100 85 - - -	
SE147094.023	LB091732.023		TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F3) TRH >C34-C40 (F4) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	100 110 210 25 25 90 120 20 45 45 45 100 110 210	<100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210	- - 40 - 40 - 40 40 40 - - - - -	- - 105 - 98 - 105 100 85 - - -	
SE147094.023	LB091732.023	TRH F Bands	TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH c10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total	mg/kg	100 110 25 25 90 120 20 45 45 45 100 110	<100 <110 <220 <25 <90 <120 <20 <45 <45 <100 <110	- - 40 - 40 - 40 40 40 40 40 - -	- - 105 - 98 - 105 100 85 - - -	
SE147094.023	LB091732.023		TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F3) TRH >C34-C40 (F4) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total	mg/kg	100 110 210 25 25 90 120 20 45 45 45 100 110 210	<100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210	- - 40 - 40 - 40 40 40 - - - - -	- - 105 - 98 - 105 100 85 - - -	
SE147094.023	LB091732.023		TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F3) TRH >C34-C40 (F4) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total TRH C10-C40 Total TRH C10-C40 Total	mg/kg	100 110 210 25 25 90 120 20 45 45 45 100 110 210 25	<100 <110 <220 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25	- - 40 - 40 - 40 40 40 - - - - - - 40	- - 105 - 98 - 105 100 85 - - - - 103	
SE147094.023	LB091732.023		TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH >C34-C40 (F4) TRH C10-C14 TRH C10-C28 TRH C29-C36 TRH C10-C36 Total TRH C10-C40 Total TRH C10-C40 Total TRH C10-C40 Total TRH C10-C40 Total TRH >C10-C40 Total TRH >C10-C40 Total TRH >C10-C40 Total TRH >C10-C40 (F2)	mg/kg	100 110 210 25 25 90 120 20 45 45 45 100 110 210 25 25	<100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25	- - 40 - 40 - 40 40 40 - - - - - - 40 -	- - 105 - 98 - 105 100 85 - - - 103 -	
	LB091732.023		TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH >C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C36 Total TRH C10-C40 Total TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C40 Total TRH >C10-C40 Total TRH >C10-C40 (F2) TRH >C10-C40 Total TRH >C10-C40 Total TRH >C10-C40 (F2)	mg/kg	100 110 210 25 25 90 120 20 45 45 45 100 110 210 25 25 90	<100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <225 <25 <90	- - 40 - 40 - 40 40 40 - - - - 40 - - 40 - - 40 - - - 40 - -	- - 105 - 98 - 105 100 85 - - - 100 - 103 - 100 - 100 -	
'OC's in Soli			TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH >C34-C40 (F4) TRH C10-C14 TRH C10-C14 TRH C29-C36 TRH C29-C36 TRH C10-C36 Total TRH >C10-C40 (F2) TRH >C10-C40 (F4)	mg/kg	100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 25 90 120	<100 <110 <210 <25 <25 <90 <120 <420 <45 <45 <100 <110 <210 <25 <25 <90 <120	- - 40 - 40 - 40 40 40 40 - - - - 40 - - 40 - - - -	- - - - 98 - - - - - - - - - - - - - - -	
' <mark>'OC's in Soil</mark> QC Sample	Sample Number	TRH F Bands	TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH >C34-C40 (F4) TRH C10-C14 TRH C10-C14 TRH C29-C36 TRH C10-C36 Total TRH C10-C40 (F2) TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C40 (F4)	mg/kg mg/kg	100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 25 90 120	<100 <110 <210 <25 <25 <90 <120 <420 <45 <45 <100 <110 <210 <225 <25 <90 <120 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28	- - 40 - 40 - 40 40 40 40 - - - 40 - - 40 - - - -	- - - - - - - - - - - - - - - - - - -	Recov
<mark>'OC's in Soil</mark> QC Sample			TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH >C34-C40 (F4) TRH C10-C14 TRH C10-C14 TRH C29-C36 TRH C29-C36 TRH C10-C36 Total TRH C10-C40 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C36 (F3) TRH >C34-C40 (F4)	mg/kg	100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 25 90 120	<100 <110 <210 <25 <25 <90 <120 <420 <45 <45 <100 <110 <210 <25 <25 <90 <120	- - 40 - 40 - 40 40 40 40 - - - - 40 - - 40 - - - -	- - - - 98 - - - - - - - - - - - - - - -	Recov
<mark>'OC's in Soil</mark> QC Sample	Sample Number LB091692.004	TRH F Bands	TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH >C34-C40 (F4) TRH C10-C14 TRH C10-C14 TRH C29-C36 TRH C10-C36 Total TRH C10-C40 (F2) TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C40 (F4)	mg/kg mg/kg	100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 25 90 120	<100 <110 <210 <25 <25 <90 <120 <420 <45 <45 <100 <110 <210 <225 <25 <90 <120 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28	- - 40 - 40 - 40 40 40 40 - - - 40 - - 40 - - - -	- - - - - - - - - - - - - - - - - - -	Recov 66
<mark>'OC's in Soil</mark> QC Sample	Sample Number LB091692.004	TRH F Bands	TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C34-C40 (F4) TRH >C34-C40 (F4) TRH C10-C14 TRH C10-C28 TRH C29-C36 TRH C10-C36 Total TRH C10-C40 Total TRH C10-C40 Total TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C40 Total TRH >C10-C40 Total TRH >C10-C40 Total TRH >C10-C40 (F4)	mg/kg mg/kg	100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120	<100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 <120 <120	- - 40 - 40 - 40 40 40 - - - 40 - - 40 - - - 40 - - - -	- - - - - - - - - - - - - - - - - - -	Recov 66 70
'OC's in Soli QC Sample	Sample Number LB091692.004	TRH F Bands	TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C16-C34 (F3) TRH >C10-C14 TRH C10-C14 TRH C15-C28 TRH C10-C36 Total TRH C10-C36 Total TRH C10-C40 Total TRH C10-C40 Total TRH >C10-C40 Total TRH >C10-C40 Total TRH >C10-C40 (F2) TRH >C10-C40 (F2) TRH >C10-C40 (F2) TRH >C10-C40 (F4)	mg/kg mg/kg	100 110 210 25 25 90 120 20 45 45 45 100 110 210 25 25 90 120 LOR 0.1 0.1 0.1	<100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 <120 <25 <25 <90 <120	- - - 40 - 40 - 40 40 40 - - - 40 - - - 40 - - - 40 - - - -	- - - - 98 - - 105 100 85 - - - 103 - - 103 - - 100 - E-(AU)-[ENV]/ Spike 2.9 2.9 2.9	Recov 66 70 64
SE147094.023 /OC's in Soll QC Sample SE147071.001	Sample Number LB091692.004	TRH F Bands	TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH >C34-C40 (F4) TRH C10-C14 TRH C10-C28 TRH C29-C36 TRH C10-C36 Total TRH C10-C40 Total TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C40 Total TRH >C10-C40 Total TRH >C10-C40 Total TRH >C10-C40 Total TRH >C10-C40 (F4)	mg/kg mg/kg	100 110 210 25 25 90 120 20 45 45 45 100 110 210 25 25 90 120 25 90 120	<100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <210 <210 <225 <25 <90 <120 <120 <225 <25 <90 <120	- - 40 - 40 - 40 40 40 - - - 40 - - 40 - - - 40 - - - -	- - - - - - - - - - - - - - - - - - -	AN433/AI Recove 66 70 64 80 63

o-xylene

Naphthalene

Polycyclic

0.1

mg/kg

mg/kg

2.7

3.6

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Method: ME-(AU)-[ENV]AN433/AN434 VOC's in Soil (continued) QC Sample Sample Number Parameter Units LOR Result Original Spike Recovery% SE147071.001 LB091692.004 Surrogates Dibromofluoromethane (Surrogate) mg/kg 4.7 4.8 94 d4-1,2-dichloroethane (Surrogate) mg/kg 3.6 3.7 73 83 d8-toluene (Surrogate) 4.1 4.3 mg/kg Bromofluorobenzene (Surrogate) mg/kg 4.1 4.6 83 -Totals Total Xylenes* 0.3 7.2 0.8 mg/kg Total BTEX* 0.6 13 1.2 mg/kg SE147094.022 LB091693.004 2.4 2.9 Monocyclic Benzene mg/kg 0.1 <0.1 83 Aromatic Toluene 0.1 2.3 <0.1 2.9 79 mg/kg 78 Ethylbenzene 0.1 2.3 <0.1 2.9 mg/kg m/p-xylene mg/kg 0.2 4.9 < 0.2 5.8 85 o-xylene 0.1 2.3 <0.1 2.9 79 mg/kg Polycyclic Naphthalene 0.1 <0.1 <0.1 mg/kg Dibromofluoromethane (Surrogate) 72 Surrogates mg/kg 3.6 3.7 d4-1,2-dichloroethane (Surrogate) 3.8 3.8 75 mg/kg -d8-toluene (Surrogate) 4.0 3.8 81 mg/kg Bromofluorobenzene (Surrogate) mg/kg 4.6 4.7 91 -Totals Total Xylenes* 0.3 7.2 <0.3 mg/kg Total BTEX* 0.6 14 <0.6 mg/kg Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433/AN434/AN410

LOR Spike Recovery% Sample Number Units Result Original QC Sample Parameter TRH C6-C10 SE147071.001 LB091692.004 25 73 51 24.65 89 mg/kg TRH C6-C9 75 20 <20 23.2 33 mg/kg Surrogates Dibromofluoromethane (Surrogate) mg/kg 4.7 4.8 94 d4-1,2-dichloroethane (Surrogate) 3.6 3.7 73 mg/kg d8-toluene (Surrogate) 4.1 4.3 83 mg/kg Bromofluorobenzene (Surrogate) mg/kg 4.1 4.6 83 VPH F Benzene (F0) mg/kg 0.1 1.9 <0.1 TRH C6-C10 minus BTEX (F1) 7.25 49 135 25 59 Bands mg/kg SE147094.022 LB091693.004 TRH C6-C10 mg/kg 25 <25 <25 24.65 86 TRH C6-C9 20 <20 <20 23.2 79 mg/kg Surrogates Dibromofluoromethane (Surrogate) 3.6 3.7 72 mg/kg d4-1,2-dichloroethane (Surrogate) mg/kg 3.8 3.8 75 d8-toluene (Surrogate) mg/kg 4.0 3.8 81 4.6 4.7 91 Bromofluorobenzene (Surrogate) mg/kg VPH F Benzene (F0) mg/kg 0.1 2.4 < 0.1 Bands TRH C6-C10 minus BTEX (F1) 25 <25 <25 7.25 97 mg/kg

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/ Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

- * NATA accreditation does not cover tthe performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS	·	LABORATORY DETAI	LS
Contact	Jessie Sixsmith	Manager	Huong Crawford
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9516 0722	Telephone	+61 2 8594 0400
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499
Email	Jessie.Sixsmith@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E22817 37-39 Pavesi St Guildford - Add	SGS Reference	SE147094A R0
Order Number	E22817	Date Received	21 Dec 2015
Samples	36	Date Reported	30 Dec 2015

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS Environmental Services' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

SurrogateVolatile Petroleum Hydrocarbons in Soil1 itemMatrix SpikeTRH (Total Recoverable Hydrocarbons) in Soil4 items

Sample counts by matrix	3 Soils	Type of documentation received	Email	
Date documentation received	21/12/15@2:37pm	Samples received in good order	Yes	
Samples received without headspace	Yes	Sample temperature upon receipt	11.6°C	
Sample container provider	SGS	Turnaround time requested	Standard	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes	
Complete documentation received	Yes			

SGS Australia Pty Ltd ABN 44 000 964 278 Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 A Alexandria NSW 2015 A

Australia **t** Australia

t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au Member of the SGS Group

HOLDING TIME SUMMARY

Method: ME (ALI) JENN/JAN/422/AN/424/AN/440

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Fibre Identification in soil Method: ME-(AU)-[EN\											
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed			
BH117M_1.0-1.1	SE147094A.026	LB092544	10 Dec 2015	21 Dec 2015	09 Dec 2016	29 Dec 2015	09 Dec 2016	30 Dec 2015			
BH118_1.0-1.1	SE147094A.036	LB092544	10 Dec 2015	21 Dec 2015	09 Dec 2016	29 Dec 2015	09 Dec 2016	30 Dec 2015			
Moisture Content	sture Content Method: ME-(AU)-[ENV]AN0										
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed			
BH114_1.6-1.7	SE147094A.035	LB092254	10 Dec 2015	21 Dec 2015	24 Dec 2015	22 Dec 2015	27 Dec 2015	23 Dec 2015			

TRH (Total Recoverable Hydrocarbons) in Soil

TRH (Total Recoverable Hy	rable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]/								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
BH114_1.6-1.7	SE147094A.035	LB092228	10 Dec 2015	21 Dec 2015	24 Dec 2015	21 Dec 2015	30 Jan 2016	29 Dec 2015	

Volatile Potroloum Hydrocarbone in Soil

Volatio F of olouin Flydroca									
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
BH114_1.6-1.7	SE147094A.035	LB092220	10 Dec 2015	21 Dec 2015	24 Dec 2015	21 Dec 2015	30 Jan 2016	29 Dec 2015	

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

olatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN4								
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %			
Bromofluorobenzene (Surrogate)	BH114_1.6-1.7	SE147094A.035	%	60 - 130%	58 †			
d4-1,2-dichloroethane (Surrogate)	BH114_1.6-1.7	SE147094A.035	%	60 - 130%	86			
d8-toluene (Surrogate)	BH114_1.6-1.7	SE147094A.035	%	60 - 130%	78			
Dibromofluoromethane (Surrogate)	BH114_1.6-1.7	SE147094A.035	%	60 - 130%	62			

SE147094A R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

Sample Number		Parameter	Units	LOR	Result
LB092228.001		TRH C10-C14	mg/kg	20	<20
		TRH C15-C28	mg/kg	45	<45
TRH C29-C36		mg/kg	45	<45	
		TRH C37-C40	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
Volatile Petroleum Hyd	rocarbons in Soil		I	Method: ME-(AU)-[E	NV]AN433/AN434/AN410
Sample Number		Parameter	Units	LOR	Result
LB092220.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	90
		d4-1,2-dichloroethane (Surrogate)	%	-	122
		d8-toluene (Surrogate)	%	-	109

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

SE147371.034 LB092254.011 % Moisture %ww 0.5 18.47380558238.318311831 3.5 1 SE147300.006 LB092254.022 % Moisture %ww 0.5 6.328041066.764374253 4.5 7 SE147300.006 LB092254.043 % Moisture %ww 0.5 13.3841131664.3.384957522 3.0 0 TRH CTORATECONSTRET Window 0.5 13.3841131664.3.384957522 3.7 0.0 TRH CTORATECONSTRET Window 0.5 13.3841131664.3.384957522 3.7 0.0 TRH CTORATECONSTRET Window 0.5 13.3841131664.3.38495752 3.7 0.0 TRH CTORATECONSTRET Digitat Digitat Digitat Digitat Circlatitat RPL % TRH CTO-C14 mg/kg 0.0 0.226 0.66 4.0 3.1 TRH CTO-C30 Tatat mg/kg 100 0 0 0.0 2.00 TRH CTO-C30 Tatat mg/kg 210 3.08 2.516 3.4 2.00 TRH CTO-C30 Tatat	Moisture Content							Metho	d: ME-(AU)-	[ENV]AN002
Side 300 (1)Side 300 (1)<	Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
Sir 4730 00LB03228 0.03% Modure% Modure <th< td=""><td>SE147371.034</td><td>LB092254.011</td><td></td><td></td><td>%w/w</td><td>0.5</td><td>18.473895582</td><td>38.3168316831</td><td>35</td><td>1</td></th<>	SE147371.034	LB092254.011			%w/w	0.5	18.473895582	38.3168316831	35	1
Set 47300 00L990224.014% Molune% Molune	SE147380.008	LB092254.022		% Moisture	%w/w	0.5	6.3263041065	6.7643742953	45	7
The fluctuation of the second	SE147390.006	LB092254.033		% Moisture	%w/w	0.5	16.298896690	07.0927318295	36	5
Original Duplicate Parameter Units LOR Original Duplicate Criteria % RPD % SE 47380.004 L898228.014 TRI CIO-C14 mgkg 20 228 168 40 31 TRI CIO-C237 mgkg 48 66 118 72 21 TRI CIO-C33 mgkg 48 66 118 72 21 TRI CIO-C33 mgkg 100 0 0 200 200 TRI CIO-C33 Trait TRI CIO-C34 mgkg 100 388 2316 34 200 TRI CIO-C16 (F2) mgkg 25 675 602 34 20 TRI CIO-C16 (F2) mgkg 20 0 0 200 0 200 200 200 0 0 200 0 10 200 0 116 200 0 10 200 0 10 200 0 10 200 0 10 200	SE147394.009	LB092254.044		% Moisture	%w/w	0.5	13.384113166	43.3849557522	37	0
SE147380.04 LB92228.014 THI C19C14 mg/kg C20 C26 C26 C23 C2 C21 THI C19C24.03 mg/kg 45 C706 C232 C21 C21 THI C19C24.03 mg/kg G0 0 0 C20 C21 THI C19C24.03 mg/kg C10 S085 C256 C31 C30 THI C10C20 Total mg/kg C10 S085 C256 C31 C30 THI F Ends TRHI C10C16 (F2) mg/kg C30 C40 C20 C40 THI F C40C4 (F4) mg/kg C30 C40 C20 C40 THI C10C28 Total mg/kg C40 C40 <td< td=""><td>TRH (Total Recove</td><td>erable Hydrocarbons)</td><td>) in Soil</td><td></td><td></td><td></td><td></td><td>Metho</td><td>d: ME-(AU)-</td><td>(ENVJAN40</td></td<>	TRH (Total Recove	erable Hydrocarbons)) in Soil					Metho	d: ME-(AU)-	(ENVJAN40
No. No. <td>Original</td> <td>Duplicate</td> <td></td> <td>Parameter</td> <td>Units</td> <td>LOR</td> <td>Original</td> <td>Duplicate</td> <td>Criteria %</td> <td>RPD %</td>	Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
FIR4 28-C26 mg/sg 4.6 9.8 1.18 7.2 2.1 TR1 C02-C40 mg/sg 100 0.0 0.0 2.00 0.0 2.00 0.0 2.00 0.0 2.00 0.0 2.00 0.0 2.00 0.0 2.00 0.0 2.00 0.0 2.00 0.0 2.00 0.0 2.00 0.0 2.00 0.0 2.00 0.0 2.00 0.0 2.00 0.0 2.00 0.0	SE147380.004	LB092228.014		TRH C10-C14	mg/kg	20	226	166	40	31
Field 32-60 mg/sg 100 0.0 0.0 0.0 TR1 (C 10-C3 Total mg/sg 110 388 2516 34 20 TR1 (C 10-C3 Total mg/sg 210 388 2516 34 230 TR1 (C 10-C3 Total mg/sg 28 674.9 502 34 230 TR1 (C 10-C3 Total mg/sg 00 200 600 200 34 230 TR1 (C 10-C3 (F2)-Nighthaten mg/sg 200 0.0 200 0 0 200 0				TRH C15-C28	mg/kg	45	2766	2232	32	21
FINE 10-C38 Total mgkq 110 3088 256 37 20 TRH 2 Bands TRH 2 CO-C0 Total mgkq 20 3088 201 3088 201 3088 201 3088 201 3088 201 3088 201 3088 201 3088 201 3088 201 3088 201 3088 201 308 201 308 201 308 201 308 201 301 201<				TRH C29-C36	mg/kg	45	96	118	72	21
First C10-C40 Total mghq 210 3088 256 37 308 TFN F Bandq mghq 25 67.5 67.2 6.4 20 TRN F C10-C16 (F2): Naphthalen mghq 00 0.2 20.0 3.4 1.0 SE 147380.012 L809228.023 TRN F C10-C14 mghq 100 0.0				TRH C37-C40	mg/kg	100	0	0	200	0
FRH FBank TRH >C10 TRH >C10 mpkg 25 675 502 34 29 TRH >C10 TRH >C10 mpkg 25 674.99 602 34 29 TRH >C10 TRH >C10 mpkg 00				TRH C10-C36 Total	mg/kg	110	3088	2516	34	20
RH + Cl0-C16 (f2) - Napithalene mpkg 25 674.99 502 34 29 RH + Cl0-C16 (f2) - Napithalene mpkg 90 200 200 0 0 00 <				TRH C10-C40 Total	mg/kg	210	3088	2516	37	20
FTRI > C16/C24 (F3) mg/kg 90 2409 2003 34 18 SE147380.012 LB05228.023 FTRI > C34-C40 (F4) mg/kg 20 0 0 200 0 SE147380.012 LB05228.023 FTRI C10-C14 mg/kg 45 49 54 117 100 TRI < C16-C28			TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	675	502	34	29
FRH > C44 (64) mg/kg 120 0 0 200 0 SEI 47380.012 L608228 023 TRH C10.C14 mg/kg 4.5 4.9 5.4 1.1 0.0 FRH C10.C14 mg/kg 4.5 4.9 5.4 1.0 0.0 2.00 0.0 FRH C29-C36 mg/kg 1.0 0.0 0.0 2.00 0.0 TRH C10-C40 Total mg/kg 1.00 4.8 2.00 0.0 2.00 0.0 TRH C10-C40 Total mg/kg 2.0 0.0 2.00				TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	674.99	502	34	29
SE147380.012 LB092228.023 TRH C10-C14 mgkg 20 0 0 200 0 TRH C15-C28 mgkg 45 49 54 10 10 TRH C3C-C30 mgkg 40 0 0 200 0 TRH C3C-C40 mgkg 100 49 54 200 0 TRH C10-C30 Total mgkg 110 49 54 200 0 TRH C10-C30 Total mgkg 210 49 54 200 0 TRH >C10-C30 Total mgkg 25 -0.33 0 200 0 TRH >C10-C16 (F2) mgkg 120 0 0 200 0 Voltite TRH >C10-C16 (F2) mgkg 120 0 0 200 0 Voltite TRH >C10-C10 (F2) mgkg 120 0 0 200 0 Voltite Parameter TRH >C10-C10 (F2) mgkg 287 8.78 0 200 <td></td> <td></td> <td></td> <td>TRH >C16-C34 (F3)</td> <td>mg/kg</td> <td>90</td> <td>2409</td> <td>2003</td> <td>34</td> <td>18</td>				TRH >C16-C34 (F3)	mg/kg	90	2409	2003	34	18
Nome Nome <th< td=""><td></td><td></td><td></td><td>TRH >C34-C40 (F4)</td><td>mg/kg</td><td>120</td><td>0</td><td>0</td><td>200</td><td>0</td></th<>				TRH >C34-C40 (F4)	mg/kg	120	0	0	200	0
Verticity TRH C29-C36 mg/kg 45 0 0 200 0 TRH C37-C40 mg/kg 100 0 0 200 0 TRH C37-C40 mg/kg 100 49 54 200 0 TRH C10-C40 Total mg/kg 210 49 54 200 0 TRH C10-C40 Total mg/kg 210 49 54 200 0 TRH 5C10-C40 (F2) mg/kg 25 -0.3 0 200 0 TRH 5C10-C40 (F2) mg/kg 120 0 0 200 0 TRH 5C10-C40 (F2) mg/kg 120 0 0 200 0 Volter TRH 5C16-C40 (F4) mg/kg 120 0 0 200 0 SE147380.044 L800222.015 TRH 6C-C10 mg/kg 20 7.36 0 200 0 SE147380.012 L800222.015 TRH 6C-C10 mg/kg - 5.51 5.64	SE147380.012	LB092228.023		TRH C10-C14	mg/kg	20	0	0	200	0
Image: series of the				TRH C15-C28	mg/kg	45	49	54	117	10
Image: constraint of the				TRH C29-C36	mg/kg	45	0	0	200	0
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				TRH C37-C40	mg/kg	100	0	0	200	0
TRH F Bands TRH >C10-C16 (F2) mg/kg 25 0 0 200 0 TRH >C10-C16 (F2) hap/kg 25 -0.33 0 200 0 TRH >C10-C16 (F2) hap/kg 90 0 0 200 0 TRH >C10-C16 (F2) hap/kg 90 0 0 200 0 Volatile Petroleum Hydrocarbons in Sol TRH >C34-C40 (F4) mg/kg 90 0 0 200 0 Volatile Petroleum Hydrocarbons in Sol TRH >C6-C10 mg/kg 25 8.76 0 200 0 SE147380.004 LB08220.014 TRH C6-C10 mg/kg 25 8.76 0 200 0 SE147380.004 LB08220.014 TRH C6-C10 mg/kg 20 7.36 0 200 0 SE147380.004 LB08220.014 LOR Original Duplo-celorein-inversite RPD % Surrogate Dibromofluoromethane (Surrogate) mg/kg 2 8.76 0 200 <				TRH C10-C36 Total	mg/kg	110	49	54	200	0
Image Image <th< td=""><td></td><td></td><td></td><td>TRH C10-C40 Total</td><td>mg/kg</td><td>210</td><td>49</td><td>54</td><td>200</td><td>0</td></th<>				TRH C10-C40 Total	mg/kg	210	49	54	200	0
TRH > C16-C34 (F3) mg/kg 90 0 0 200 0 TRH > C16-C34 (F3) mg/kg 120 0 0 200 0 Volatile Petroleum Hytrocarbons In Sol Metrocarbons In Sol Original Duplicate Parameter Nethon: INSUME INSU			TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	0	0	200	0
Intl > C3 - C40 (F4) mg/kg 120 0 0 200 Volatile Petroleum Hydrocarbons in Soll Method: ME-(AU)-[EI-VJAN433/AN443/AN441 Original Duplicate Parameter Units LOR Original Duplicate Criteria % RPD % SE147380.004 LB092220.014 TRH C6-C10 mg/kg 25 8.76 0 200 0 Surrogates Dibromofluoromethane (Surrogate) mg/kg - 5.84 5.53 30 4 64-toluene (Surrogate) mg/kg - 5.84 5.63 30 20 0 VPH F Bands Benzene (F0) mg/kg - 5.51 5.64 30 20 0 SE147380.012 VPH F Bands Benzene (F0) mg/kg - 3.96 4.45 30 12 VPH F Bands Enzene (F0) mg/kg 25 2.37 18.18 150 0 SE147380.012 LB092220.025 TRH C6-C10 minus BTEX (F1) mg/kg 25 2.37<				TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	-0.33	0	200	0
Volatile Petroleum Hydrocarbons in Soil Metrod: ME-(AU)-[ENV]AN433/AN441 Original Duplicate Parameter Units LOR Original Duplicate Criteria % RPD % SE147380.004 LB092220.014 TRH C6-C10 mg/kg 25 8.76 0 200 0 SE147380.004 LB092220.014 TRH C6-C10 mg/kg 20 7.36 0 200 0 Surrogates Dibromofluoromethane (Surrogate) mg/kg - 3.74 3.61 30 4 d4-1,2-dichloroethane (Surrogate) mg/kg - 5.51 5.64 30 2 Bromofluorobenzene (Surrogate) mg/kg - 3.96 4.45 30 12 Bromofluorobenzene (F0) mg/kg 0.1 0 <td< td=""><td></td><td></td><td></td><td>TRH >C16-C34 (F3)</td><td>mg/kg</td><td>90</td><td>0</td><td>0</td><td>200</td><td>0</td></td<>				TRH >C16-C34 (F3)	mg/kg	90	0	0	200	0
Original Duplicate Parameter Units LOR Original Duplicate Criteria % RPD % SE147380.004 LB092220.014 TRH C6-C10 mg/kg 25 8.76 0 200 0 TRH C6-C9 mg/kg 20 7.36 0 200 0 Surrogates Dibromofluoromethane (Surrogate) mg/kg - 3.74 3.61 30 4 d4-1,2-dichloroethane (Surrogate) mg/kg - 5.51 5.64 30 2 Bromofluorobezene (Surrogate) mg/kg - 3.96 4.45 30 2 VPH F Bands Benzene (F0) mg/kg - 3.96 4.45 30 2 SE147380.012 LB092220.025 TRH C6-C10 mg/kg 0 <				TRH >C34-C40 (F4)	mg/kg	120	0	0	200	0
SE147380.004 LB092220.014 TRH C6-C10 mg/kg 25 8.76 0 200 0 Surogates Dibromofluoromethane (Surogate) mg/kg - 3.74 3.61 30 4 d4-1,2-dichloroethane (Surogate) mg/kg - 5.84 5.53 30 5 d8-toluene (Surogate) mg/kg - 5.51 5.64 30 2 VPH F Bands Benzene (F0) mg/kg - 3.96 4.45 30 12 SE147380.012 LB092220.025 TRH C6-C10 minus BTEX (F1) mg/kg 0.1 0 0 200 0 SE147380.012 LB092220.025 TRH C6-C10 mg/kg 25 8.74 -0.04 200 0 SE147380.012 LB092220.025 TRH C6-C10 mg/kg 25 23.37 18.18 150 0 SE147380.012 LB092220.025 TRH C6-C10 mg/kg 20 18.82 14.47 150 0 SUrogates Dibromofluor	Volatile Petroleum	Hydrocarbons in Soi	I				Metho	1: ME-(AU)-[EN	VJAN433/A	N434/AN410
RH C6-C9 mg/kg 20 7.36 0 200 0 Surrogates Dibromfluoromethane (Surrogate) mg/kg - 3.74 3.61 30 4 d4-1,2-dichloroethane (Surrogate) mg/kg - 5.84 5.53 30 5 d8-loluene (Surrogate) mg/kg - 5.51 5.64 30 20 WPH F Bands Berzene (F0) mg/kg - 3.96 4.45 30 12 SE147380.012 LB092220.025 RH C6-C10 minus BTEX (F1) mg/kg 0.1 0 0 200 00 SE147380.012 LB092220.025 RH C6-C10 minus BTEX (F1) mg/kg 25 23.37 18.18 150 00 SE147380.012 LB092220.025 RH C6-C10 mg/kg 20 18.82 14.47 150 00 SUrogates Dibromfluoromethane (Surrogate) mg/kg 2 4.01 3.72 30 81 d4-1,2-dichloroethane (Surrogate) mg/kg - 5.	Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
Surrogates Dibromofluoromethane (Surrogate) mg/kg - 3.74 3.61 30 4 d4-1,2-dichloroethane (Surrogate) mg/kg - 5.84 5.53 30 5 d8-loluene (Surrogate) mg/kg - 5.51 5.64 30 2 Bromofluorobenzene (Surrogate) mg/kg - 5.51 5.64 30 2 VPH F Bands Benzene (F0) mg/kg 0.1 0 0 200 0 SE147380.012 LB092220.025 TRH C6-C10 minus BTEX (F1) mg/kg 25 8.74 -0.04 200 0 SE147380.012 LB092220.025 TRH C6-C10 minus BTEX (F1) mg/kg 25 8.74 -0.04 200 0 SE147380.012 LB092220.025 TRH C6-C10 mg/kg 20 18.82 14.47 150 0 SUrogates Dibromofluoromethane (Surrogate) mg/kg 2 4.01 3.72 30 8 d4-1,2-dichloroethane (Surrogate) mg/kg <	SE147380.004	LB092220.014		TRH C6-C10	mg/kg	25	8.76	0	200	0
Image: second				TRH C6-C9	mg/kg	20	7.36	0	200	0
Image: head of the end of the en			Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.74	3.61	30	4
Bromofluorobenzene (Surrogate) mg/kg - 3.96 4.45 30 12 VPH F Bands Benzene (F0) mg/kg 0.1 0 0 200 0 SE147380.012 LB092220.025 TRH C6-C10 minus BTEX (F1) mg/kg 25 23.37 18.18 150 0 SE147380.012 LB092220.025 TRH C6-C10 mg/kg 20 18.82 14.47 150 0 SUrrogates Dibromofluoromethane (Surrogate) mg/kg - 4.01 3.72 30 8 d4-1,2-dichloroethane (Surrogate) mg/kg - 5.5 4.95 30 11 d8-toluene (Surrogate) mg/kg - 6.25 5.58 30 11 Bromofluorobenzene (Surrogate) mg/kg - 4.45 3.59 30 21 VPH F Bands Benzene (F0) mg/kg 0.1 0.02 0.02 200 0				d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.84	5.53	30	5
VPH F Bands Benzene (F0) mg/kg 0.1 0 0 200 0 TRH C6-C10 minus BTEX (F1) mg/kg 25 8.74 -0.04 200 0 SE147380.012 LB092220.025 TRH C6-C10 mg/kg 25 23.37 18.18 150 0 SE147380.012 LB092220.025 TRH C6-C10 mg/kg 20 18.82 14.47 150 0 Surrogates Dibromofluoromethane (Surrogate) mg/kg - 4.01 3.72 30 8 d4-1,2-dichloroethane (Surrogate) mg/kg - 5.5 4.95 30 11 d8-toluene (Surrogate) mg/kg - 6.25 5.58 30 11 Bromofluorobenzene (Surrogate) mg/kg - 4.45 3.59 30 21 VPH F Bands Benzene (F0) mg/kg 0.1 0.02 0.02 200 0				d8-toluene (Surrogate)	mg/kg	-	5.51	5.64	30	2
TRH C6-C10 minus BTEX (F1) mg/kg 25 8.74 -0.04 200 0 SE147380.012 LB092220.025 TRH C6-C10 mg/kg 25 23.37 18.18 150 0 SE147380.012 LB092220.025 TRH C6-C10 mg/kg 20 18.82 14.47 150 0 Surrogates Dibromofluoromethane (Surrogate) mg/kg - 4.01 3.72 30 8 d4-1,2-dichloroethane (Surrogate) mg/kg - 5.5 4.95 30 11 d8-toluene (Surrogate) mg/kg - 6.25 5.58 30 11 Bromofluorobenzene (Surrogate) mg/kg - 4.45 3.59 30 21 VPH F Bands Benzene (F0) mg/kg 0.1 0.02 0.02 200 0				Bromofluorobenzene (Surrogate)	mg/kg	-	3.96	4.45	30	12
SE147380.012 LB092220.025 TRH C6-C10 mg/kg 25 23.37 18.18 150 0 TRH C6-C9 mg/kg 20 18.82 14.47 150 0 Surrogates Dibromofluoromethane (Surrogate) mg/kg - 4.01 3.72 30 8 d4-1,2-dichloroethane (Surrogate) mg/kg - 5.5 4.95 30 11 d8-toluene (Surrogate) mg/kg - 6.25 5.58 30 11 Bromofluorobenzene (Surrogate) mg/kg - 4.45 3.59 30 21 VPH F Bands Benzene (F0) mg/kg 0.1 0.02 0.02 200 0			VPH F Bands	Benzene (F0)	mg/kg	0.1	0	0	200	0
TRH C6-C9 mg/kg 20 18.82 14.47 150 0 Surrogates Dibromofluoromethane (Surrogate) mg/kg - 4.01 3.72 30 8 d4-1,2-dichloroethane (Surrogate) mg/kg - 5.5 4.95 30 11 d8-toluene (Surrogate) mg/kg - 6.25 5.58 30 11 Bromofluorobenzene (Surrogate) mg/kg - 4.45 3.59 30 21 VPH F Bands Benzene (F0) mg/kg 0.1 0.02 0.02 200 0				TRH C6-C10 minus BTEX (F1)	mg/kg	25	8.74	-0.04	200	0
Surrogates Dibromofluoromethane (Surrogate) mg/kg - 4.01 3.72 30 8 d4-1,2-dichloroethane (Surrogate) mg/kg - 5.5 4.95 30 11 d8-toluene (Surrogate) mg/kg - 6.25 5.58 30 11 Bromofluorobenzene (Surrogate) mg/kg - 4.45 3.59 30 21 VPH F Bands Benzene (F0) mg/kg 0.1 0.02 0.02 200 0	SE147380.012	LB092220.025		TRH C6-C10	mg/kg	25	23.37	18.18	150	0
d4-1,2-dichloroethane (Surrogate) mg/kg - 5.5 4.95 30 11 d8-toluene (Surrogate) mg/kg - 6.25 5.58 30 11 Bromofluorobenzene (Surrogate) mg/kg - 4.45 3.59 30 21 VPH F Bands Benzene (F0) mg/kg 0.1 0.02 0.02 200 0				TRH C6-C9	mg/kg	20	18.82	14.47	150	0
d8-toluene (Surrogate) mg/kg - 6.25 5.58 30 11 Bromofluorobenzene (Surrogate) mg/kg - 4.45 3.59 30 21 VPH F Bands Benzene (F0) mg/kg 0.1 0.02 0.02 200 0			Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.01	3.72	30	8
Bromofluorobenzene (Surrogate) mg/kg - 4.45 3.59 30 21 VPH F Bands Benzene (F0) mg/kg 0.1 0.02 0.02 200 0				d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.5	4.95	30	11
VPH F Bands Benzene (F0) mg/kg 0.1 0.02 200 0				d8-toluene (Surrogate)	mg/kg	-	6.25	5.58	30	11
				Bromofluorobenzene (Surrogate)	mg/kg	-	4.45	3.59	30	21
TRH C6-C10 minus BTEX (F1) mg/kg 25 22.53 17.44 155 0			VPH F Bands	Benzene (F0)	mg/kg	0.1	0.02	0.02	200	0
				TRH C6-C10 minus BTEX (F1)	mg/kg	25	22.53	17.44	155	0

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB092228.002		TRH C10-C14	mg/kg	20	34	40	60 - 140	85
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	93
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	68
	TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	34	40	60 - 140	85
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	95
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	65
Volatile Petroleum I	Hydrocarbons in a	Soil				Method: ME-(Al	J)-[ENV]AN43	3/AN434/AN41
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB092220.002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	91
		TRH C6-C9	mg/kg	20	<20	23.2	60 - 140	84
	Surragatas	Dibromofluoromothana (Surragata)	malka		26	5	60 140	70

	TRH C6-C9	mg/kg	20	<20	23.2	60 - 140	84
Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.6	5	60 - 140	72
	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.1	5	60 - 140	101
	d8-toluene (Surrogate)	mg/kg	-	4.6	5	60 - 140	93
	Bromofluorobenzene (Surrogate)	mg/kg	-	4.3	5	60 - 140	86
VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	7.25	60 - 140	125

Bands

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 e<u>Reco</u>very% QC Sample Sample Number Parameter Units LOR Original Spil SE147094A.03 LB092228.024 TRH C10-C14 mg/kg 20 63 40 58 ④ 5 TRH C15-C28 mg/kg 45 100 40 8 ④ TRH C29-C36 45 <45 40 73 mg/kg TRH C37-C40 mg/kg 100 <100 -TRH C10-C36 Total 110 170 mg/kg --TRH C10-C40 Total 210 <210 mg/kg TRH F Bands TRH >C10-C16 (F2) 25 98 40 15 ④ mg/kg TRH >C10-C16 (F2) - Naphthalene mg/kg 25 98 TRH >C16-C34 (F3) 90 <90 40 mg/kg 30 ④ TRH >C34-C40 (F4) <120 mg/kg 120 Method: ME-(AU)-[ENV]AN433/AN434/AN410 Volatile Petroleum Hydrocarbons in Soil Result Original Spike Recovery% QC Sample Sample Number LOR Parameter Units SE147094A.03 LB092220.004 TRH C6-C10 25 <25 <25 24.65 94 mg/kg 5 TRH C6-C9 82 mg/kg 20 <20 <20 23.2 Surrogates Dibromofluoromethane (Surrogate) mg/kg 3.7 3.1 74 d4-1,2-dichloroethane (Surrogate) 5.0 4.3 100 mg/kg d8-toluene (Surrogate) mg/kg 4.8 3.9 97 --Bromofluorobenzene (Surrogate) 3.5 2.9 70 mg/kg VPH F Benzene (F0) mg/kg 0.1 2.9 <0.1 TRH C6-C10 minus BTEX (F1) 7.25

mg/kg

25

<25

<25

122

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/ Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Jessie Sixsmith	Manager	Huong Crawford
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9516 0722	Telephone	+61 2 8594 0400
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499
Email	Jessie.Sixsmith@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E22817 - Pavesi Street Guildford West	SGS Reference	SE147250 R0
Order Number	E22817	Date Received	16 Dec 2015
Samples	6	Date Reported	23 Dec 2015

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS Environmental Services' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Matrix Spike

Trace Metals (Dissolved) in Water by ICPMS

1 item

Sample counts by matrix	6 Waters	Type of documentation received	COC	
Date documentation received	16/12/2015	Samples received in good order	Yes	
Samples received without headspace	Yes	Sample temperature upon receipt	8.7°C	
Sample container provider	SGS	Turnaround time requested	Standard	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes	
Complete documentation received	Yes			

SGS Australia Pty Ltd ABN 44 000 964 278 Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 A Alexandria NSW 2015 A

5 Australia 5 Australia

t +61 2 8594 0400 f +61 2 8594 0499

2 8594 0499 www.sgs.com.au

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

9 r						Method: ME-(AU)-[ENV]AN311/AN31
Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
SE147250.001	LB092266	15 Dec 2015	16 Dec 2015	12 Jan 2016	22 Dec 2015	12 Jan 2016	22 Dec 2015
SE147250.002	LB092266	15 Dec 2015	16 Dec 2015	12 Jan 2016	22 Dec 2015	12 Jan 2016	22 Dec 2015
SE147250.003	LB092266	15 Dec 2015	16 Dec 2015	12 Jan 2016	22 Dec 2015	12 Jan 2016	22 Dec 2015
SE147250.004	LB092266	15 Dec 2015	16 Dec 2015	12 Jan 2016	22 Dec 2015	12 Jan 2016	22 Dec 2015
SE147250.005	LB092266	15 Dec 2015	16 Dec 2015	12 Jan 2016	22 Dec 2015	12 Jan 2016	22 Dec 2015
Hydrocarbons) in Water						Method: I	ME-(AU)-[ENV]AN42
Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
SE147250.001	LB092026	15 Dec 2015	16 Dec 2015	22 Dec 2015	17 Dec 2015	26 Jan 2016	23 Dec 2015
SE147250.002	LB092026	15 Dec 2015	16 Dec 2015	22 Dec 2015	17 Dec 2015	26 Jan 2016	23 Dec 2015
SE147250.003	LB092026	15 Dec 2015	16 Dec 2015	22 Dec 2015	17 Dec 2015	26 Jan 2016	23 Dec 2015
SE147250.004	LB092026	15 Dec 2015	16 Dec 2015	22 Dec 2015	17 Dec 2015	26 Jan 2016	23 Dec 2015
SE147250.005	LB092026	15 Dec 2015	16 Dec 2015	22 Dec 2015	17 Dec 2015	26 Jan 2016	23 Dec 2015
Water by ICPMS						Method: I	ME-(AU)-[ENV]AN31
Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
SE147250.001	LB092068	15 Dec 2015	16 Dec 2015	12 Jun 2016	18 Dec 2015	12 Jun 2016	21 Dec 2015
SE147250.002	LB092068	15 Dec 2015	16 Dec 2015	12 Jun 2016	18 Dec 2015	12 Jun 2016	21 Dec 2015
SE147250.003	LB092068	15 Dec 2015	16 Dec 2015	12 Jun 2016	18 Dec 2015	12 Jun 2016	21 Dec 2015
SE147250.004	LB092068	15 Dec 2015	16 Dec 2015	12 Jun 2016	18 Dec 2015	12 Jun 2016	21 Dec 2015
SE147250.005	LB092068	15 Dec 2015	16 Dec 2015	12 Jun 2016	18 Dec 2015	12 Jun 2016	21 Dec 2015
drocarbons) in Water						Method: I	ME-(AU)-[ENV]AN40
Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
SE147250.001	LB092026	15 Dec 2015	16 Dec 2015	22 Dec 2015	17 Dec 2015	26 Jan 2016	23 Dec 2015
SE147250.002	LB092026	15 Dec 2015	16 Dec 2015	22 Dec 2015	17 Dec 2015	26 Jan 2016	23 Dec 2015
SE147250.003	LB092026	15 Dec 2015	16 Dec 2015	22 Dec 2015	17 Dec 2015	26 Jan 2016	23 Dec 2015
SE147250.004	LB092026	15 Dec 2015	16 Dec 2015	22 Dec 2015	17 Dec 2015	26 Jan 2016	23 Dec 2015
SE147250.005	LB092026	15 Dec 2015	16 Dec 2015	22 Dec 2015	17 Dec 2015	26 Jan 2016	23 Dec 2015
						Method: ME-(AU)-[ENV]AN433/AN434
Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
SE147250.001	LB092056			22 Dec 2015	18 Dec 2015	27 Jan 2016	23 Dec 2015
SE147250.002	LB092056	15 Dec 2015	16 Dec 2015	22 Dec 2015	18 Dec 2015	27 Jan 2016	23 Dec 2015
SE147250.003	LB092056	15 Dec 2015	16 Dec 2015	22 Dec 2015	18 Dec 2015	27 Jan 2016	23 Dec 2015
SE147250.004	LB092056	15 Dec 2015	16 Dec 2015	22 Dec 2015	18 Dec 2015	27 Jan 2016	23 Dec 2015
SE147250.005	LB092056	15 Dec 2015	16 Dec 2015	22 Dec 2015	18 Dec 2015	27 Jan 2016	23 Dec 2015
							23 Dec 2015
Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analvsis Due	Analysed
•							23 Dec 2015
							23 Dec 2015
							23 Dec 2015
SE147250.004	LB092056	15 Dec 2015	16 Dec 2015	22 Dec 2015		27 Jan 2016	23 Dec 2015
							23 Dec 2015
02111200.000	20002000	10 200 2010		22 200 2010	10 200 2010	2. 00. 20.0	20 200 2010
	Sample No. SE147250.001 SE147250.002 SE147250.003 SE147250.004 SE147250.005 Hydrocarbons) In Water Sample No. SE147250.001 SE147250.002 SE147250.003 SE147250.001 SE147250.002 SE147250.003 SE147250.004 SE147250.005 Water by ICPMS Sample No. SE147250.001 SE147250.002 SE147250.003 SE147250.001 SE147250.001 SE147250.001 SE147250.001 SE147250.001 SE147250.001 SE147250.001 SE147250.001 SE147250.001 SE147250.002 SE147250.003 SE147250.001 SE147250.002 SE147250.003 SE147250.004 SE147250.005 SE147250.006 rbons in Water Sample No. SE147250.001 SE147250	Sample No. QC Ref SE147250.001 LB092266 SE147250.002 LB092266 SE147250.003 LB092266 SE147250.004 LB092266 SE147250.005 LB092266 SE147250.005 LB092266 SE147250.005 LB092266 SE147250.001 LB092026 SE147250.002 LB092026 SE147250.003 LB092026 SE147250.004 LB092026 SE147250.005 LB092026 SE147250.004 LB092026 SE147250.005 LB092088 SE147250.001 LB092088 SE147250.002 LB092088 SE147250.003 LB092088 SE147250.004 LB092088 SE147250.005 LB092088 SE147250.001 LB092026 SE147250.002 LB092026 SE147250.001 LB092026 SE147250.002 LB092026 SE147250.001 LB092026 SE147250.001 LB092026 SE147250.002 LB092026 SE	Sample No. QC Ref Sampled SE147250.001 LB092266 15 Dec 2015 SE147250.002 LB092266 15 Dec 2015 SE147250.003 LB092266 15 Dec 2015 SE147250.004 LB092266 15 Dec 2015 SE147250.005 LB092266 15 Dec 2015 SE147250.005 LB092266 15 Dec 2015 SE147250.001 LB092026 15 Dec 2015 SE147250.002 LB092026 15 Dec 2015 SE147250.003 LB092026 15 Dec 2015 SE147250.004 LB092026 15 Dec 2015 SE147250.005 LB092026 15 Dec 2015 SE147250.004 LB092026 15 Dec 2015 SE147250.001 LB092068 15 Dec 2015 SE147250.001 LB092068 15 Dec 2015 SE147250.002 LB092068 15 Dec 2015 SE147250.003 LB092068 15 Dec 2015 SE147250.004 LB092068 15 Dec 2015 SE147250.005 LB092026 15 Dec 2015 SE147250.005 LB092026 <td< td=""><td>Sample No. QC Ref Sampled Received SE147250.001 LB092266 15 Dec 2015 16 Dec 2015 SE147250.002 LB092266 15 Dec 2015 16 Dec 2015 SE147250.003 LB092266 15 Dec 2015 16 Dec 2015 SE147250.004 LB092266 15 Dec 2015 16 Dec 2015 SE147250.005 LB092266 15 Dec 2015 16 Dec 2015 SE147250.001 LB092026 15 Dec 2015 16 Dec 2015 SE147250.002 LB092026 15 Dec 2015 16 Dec 2015 SE147250.002 LB092026 15 Dec 2015 16 Dec 2015 SE147250.004 LB092026 15 Dec 2015 16 Dec 2015 SE147250.004 LB092026 15 Dec 2015 16 Dec 2015 SE147250.004 LB092026 15 Dec 2015 16 Dec 2015 SE147250.001 LB092068 15 Dec 2015 16 Dec 2015 SE147250.001 LB092068 15 Dec 2015 16 Dec 2015 SE147250.001 LB092068 15 Dec 2015 16 Dec 2015 SE147250.001 LB092026<</td><td>Sample No. QC Ref Sampled Received Extraction Due SE147250.001 LB092266 15 Dec 2015 16 Dec 2015 12 Jan 2016 SE147250.003 LB092266 15 Dec 2015 16 Dec 2015 12 Jan 2016 SE147250.004 LB092266 15 Dec 2015 16 Dec 2015 12 Jan 2016 SE147250.004 LB092266 15 Dec 2015 16 Dec 2015 12 Jan 2016 SE147250.005 LB092266 15 Dec 2015 16 Dec 2015 12 Jan 2016 IHydrocarbona) in Water Sample No. QC Ref Sample No. Received Extraction Due SE147250.001 LB092026 15 Dec 2015 16 Dec 2015 22 Dec 2015 SE147250.003 LB092026 15 Dec 2015 16 Dec 2015 22 Dec 2015 SE147250.004 LB092026 15 Dec 2015 16 Dec 2015 12 Jun 2016 SE147250.004 LB092068 15 Dec 2015 16 Dec 2015 12 Jun 2016 SE147250.001 LB092068 15 Dec 2015 16 Dec 2015 12 Jun 2016 SE147250.001 LB092068</td><td>Sample No. QC Ref Sampled Received Extraction Due Extracted SE147250.001 LB092266 15 Dec 2015 19 Dec 2015 12 Jan 2016 22 Dec 2015 SE147250.003 LB092266 15 Dec 2015 18 Dec 2015 12 Jan 2016 22 Dec 2015 SE147250.003 LB092266 15 Dec 2015 18 Dec 2015 12 Jan 2016 22 Dec 2015 SE147250.005 LB092266 15 Dec 2015 16 Dec 2015 12 Jan 2016 22 Dec 2015 Hydrocarbone) Netarr Sample No. QC Ref Sample No 22 Dec 2015 17 Dec 2015 SE147250.001 LB092026 15 Dec 2015 16 Dec 2015 22 Dec 2015 17 Dec 2015 SE147250.002 LB092026 15 Dec 2015 16 Dec 2015 22 Dec 2015 17 Dec 2015 SE147250.004 LB092026 15 Dec 2015 16 Dec 2015 22 Dec 2015 17 Dec 2015 SE147250.004 LB092068 15 Dec 2015 16 Dec 2015 12 Jan 2016 18 Dec 2015 SE147250.001 LB092068 15 Dec 2015 16 Dec 2015</td><td>Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due SE147250.001 LE0902266 15 Dec 2015 16 Dec 2015 12 Jan 2016 22 Dec 2015 12 Jan 2016 SE147250.002 LE092266 15 Dec 2015 16 Dec 2015 12 Jan 2016 22 Dec 2015 12 Jan 2016 SE147250.004 LE092266 15 Dec 2015 16 Dec 2015 12 Jan 2016 22 Dec 2015 12 Jan 2016 SE147250.005 LB092266 15 Dec 2015 16 Dec 2015 12 Jan 2016 22 Dec 2015 12 Jan 2016 SE147250.001 LB092226 15 Dec 2015 16 Dec 2015 22 Dec 2015 17 Dec 2016 28 Jan 2016 SE147250.002 LB092026 15 Dec 2015 16 Dec 2015 22 Dec 2015 17 Dec 2016 28 Jan 2016 SE147250.004 LB092026 15 Dec 2015 16 Dec 2015 12 Dec 2015 17 Dec 2016 28 Jan 2016 SE147250.004 LB092026 15 Dec 2015 16 Dec 2015 12 Dec 2015 17 Dec 2016 28 Jan 2016 SE147250.004 LB0920268</td></td<>	Sample No. QC Ref Sampled Received SE147250.001 LB092266 15 Dec 2015 16 Dec 2015 SE147250.002 LB092266 15 Dec 2015 16 Dec 2015 SE147250.003 LB092266 15 Dec 2015 16 Dec 2015 SE147250.004 LB092266 15 Dec 2015 16 Dec 2015 SE147250.005 LB092266 15 Dec 2015 16 Dec 2015 SE147250.001 LB092026 15 Dec 2015 16 Dec 2015 SE147250.002 LB092026 15 Dec 2015 16 Dec 2015 SE147250.002 LB092026 15 Dec 2015 16 Dec 2015 SE147250.004 LB092026 15 Dec 2015 16 Dec 2015 SE147250.004 LB092026 15 Dec 2015 16 Dec 2015 SE147250.004 LB092026 15 Dec 2015 16 Dec 2015 SE147250.001 LB092068 15 Dec 2015 16 Dec 2015 SE147250.001 LB092068 15 Dec 2015 16 Dec 2015 SE147250.001 LB092068 15 Dec 2015 16 Dec 2015 SE147250.001 LB092026<	Sample No. QC Ref Sampled Received Extraction Due SE147250.001 LB092266 15 Dec 2015 16 Dec 2015 12 Jan 2016 SE147250.003 LB092266 15 Dec 2015 16 Dec 2015 12 Jan 2016 SE147250.004 LB092266 15 Dec 2015 16 Dec 2015 12 Jan 2016 SE147250.004 LB092266 15 Dec 2015 16 Dec 2015 12 Jan 2016 SE147250.005 LB092266 15 Dec 2015 16 Dec 2015 12 Jan 2016 IHydrocarbona) in Water Sample No. QC Ref Sample No. Received Extraction Due SE147250.001 LB092026 15 Dec 2015 16 Dec 2015 22 Dec 2015 SE147250.003 LB092026 15 Dec 2015 16 Dec 2015 22 Dec 2015 SE147250.004 LB092026 15 Dec 2015 16 Dec 2015 12 Jun 2016 SE147250.004 LB092068 15 Dec 2015 16 Dec 2015 12 Jun 2016 SE147250.001 LB092068 15 Dec 2015 16 Dec 2015 12 Jun 2016 SE147250.001 LB092068	Sample No. QC Ref Sampled Received Extraction Due Extracted SE147250.001 LB092266 15 Dec 2015 19 Dec 2015 12 Jan 2016 22 Dec 2015 SE147250.003 LB092266 15 Dec 2015 18 Dec 2015 12 Jan 2016 22 Dec 2015 SE147250.003 LB092266 15 Dec 2015 18 Dec 2015 12 Jan 2016 22 Dec 2015 SE147250.005 LB092266 15 Dec 2015 16 Dec 2015 12 Jan 2016 22 Dec 2015 Hydrocarbone) Netarr Sample No. QC Ref Sample No 22 Dec 2015 17 Dec 2015 SE147250.001 LB092026 15 Dec 2015 16 Dec 2015 22 Dec 2015 17 Dec 2015 SE147250.002 LB092026 15 Dec 2015 16 Dec 2015 22 Dec 2015 17 Dec 2015 SE147250.004 LB092026 15 Dec 2015 16 Dec 2015 22 Dec 2015 17 Dec 2015 SE147250.004 LB092068 15 Dec 2015 16 Dec 2015 12 Jan 2016 18 Dec 2015 SE147250.001 LB092068 15 Dec 2015 16 Dec 2015	Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due SE147250.001 LE0902266 15 Dec 2015 16 Dec 2015 12 Jan 2016 22 Dec 2015 12 Jan 2016 SE147250.002 LE092266 15 Dec 2015 16 Dec 2015 12 Jan 2016 22 Dec 2015 12 Jan 2016 SE147250.004 LE092266 15 Dec 2015 16 Dec 2015 12 Jan 2016 22 Dec 2015 12 Jan 2016 SE147250.005 LB092266 15 Dec 2015 16 Dec 2015 12 Jan 2016 22 Dec 2015 12 Jan 2016 SE147250.001 LB092226 15 Dec 2015 16 Dec 2015 22 Dec 2015 17 Dec 2016 28 Jan 2016 SE147250.002 LB092026 15 Dec 2015 16 Dec 2015 22 Dec 2015 17 Dec 2016 28 Jan 2016 SE147250.004 LB092026 15 Dec 2015 16 Dec 2015 12 Dec 2015 17 Dec 2016 28 Jan 2016 SE147250.004 LB092026 15 Dec 2015 16 Dec 2015 12 Dec 2015 17 Dec 2016 28 Jan 2016 SE147250.004 LB0920268

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN420

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH104M	SE147250.001	%	40 - 130%	58
	BH106M	SE147250.002	%	40 - 130%	60
	BH117M	SE147250.003	%	40 - 130%	50
d14-p-terphenyl (Surrogate)	BH104M	SE147250.001	%	40 - 130%	80
	BH106M	SE147250.002	%	40 - 130%	80
	BH117M	SE147250.003	%	40 - 130%	60
d5-nitrobenzene (Surrogate)	BH104M	SE147250.001	%	40 - 130%	58
	BH106M	SE147250.002	%	40 - 130%	56
	BH117M	SE147250.003	%	40 - 130%	46

VOCs in Water				Method: ME-(AU)-	[ENV]AN433/AN434
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH104M	SE147250.001	%	40 - 130%	105
	BH106M	SE147250.002	%	40 - 130%	102
	BH117M	SE147250.003	%	40 - 130%	106
	GWQD-1	SE147250.004	%	40 - 130%	107
	QR-2	SE147250.005	%	40 - 130%	106
	Trip Spike	SE147250.006	%	40 - 130%	94
d4-1,2-dichloroethane (Surrogate)	BH104M	SE147250.001	%	40 - 130%	118
	BH106M	SE147250.002	%	40 - 130%	120
	BH117M	SE147250.003	%	40 - 130%	116
	GWQD-1	SE147250.004	%	40 - 130%	107
	QR-2	SE147250.005	%	40 - 130%	109
	Trip Spike	SE147250.006	%	40 - 130%	100
d8-toluene (Surrogate)	BH104M	SE147250.001	%	40 - 130%	98
	BH106M	SE147250.002	%	40 - 130%	96
	BH117M	SE147250.003	%	40 - 130%	96
	GWQD-1	SE147250.004	%	40 - 130%	98
	QR-2	SE147250.005	%	40 - 130%	97
	Trip Spike	SE147250.006	%	40 - 130%	99
Dibromofluoromethane (Surrogate)	BH104M	SE147250.001	%	40 - 130%	119
	BH106M	SE147250.002	%	40 - 130%	122
	BH117M	SE147250.003	%	40 - 130%	115
	GWQD-1	SE147250.004	%	40 - 130%	109
	QR-2	SE147250.005	%	40 - 130%	113
	Trip Spike	SE147250.006	%	40 - 130%	100

Volatile Petroleum Hydrocarbons in Water

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH104M	SE147250.001	%	40 - 130%	105
	BH106M	SE147250.002	%	40 - 130%	102
	BH117M	SE147250.003	%	40 - 130%	106
	GWQD-1	SE147250.004	%	40 - 130%	107
	QR-2	SE147250.005	%	40 - 130%	106
d4-1,2-dichloroethane (Surrogate)	BH104M	SE147250.001	%	60 - 130%	118
	BH106M	SE147250.002	%	60 - 130%	120
	BH117M	SE147250.003	%	60 - 130%	116
	GWQD-1	SE147250.004	%	60 - 130%	107
	QR-2	SE147250.005	%	60 - 130%	109
d8-toluene (Surrogate)	BH104M	SE147250.001	%	40 - 130%	98
	BH106M	SE147250.002	%	40 - 130%	96
	BH117M	SE147250.003	%	40 - 130%	96
	GWQD-1	SE147250.004	%	40 - 130%	98
	QR-2	SE147250.005	%	40 - 130%	97
Dibromofluoromethane (Surrogate)	BH104M	SE147250.001	%	40 - 130%	119
	BH106M	SE147250.002	%	40 - 130%	122
	BH117M	SE147250.003	%	40 - 130%	115
	GWQD-1	SE147250.004	%	40 - 130%	109
	QR-2	SE147250.005	%	40 - 130%	113

METHOD BLANKS

Method: ME-(AU)-[ENV]AN318

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water Method: I			Method: ME-	(AU)-[ENV]AN311/AN312
Sample Number	Parameter	Units	LOR	Result
LB092266.001	Mercury	mg/L	0.0001	<0.0001

PAH (Polynuclear Aromatic Hydrocarbons) in Water

PAH (Polynuclear Aromatic Hydrocarbo	AH (Polynuclear Aromatic Hydrocarbons) in Water			
Sample Number	Parameter	Units	LOR	Result
LB092026.001	Naphthalene	μg/L	0.1	<0.1
	2-methylnaphthalene	µg/L	0.1	<0.1
	1-methylnaphthalene	μg/L	0.1	<0.1
	Acenaphthylene	μg/L	0.1	<0.1
	Acenaphthene	μg/L	0.1	<0.1
	Fluorene	μg/L	0.1	<0.1
	Phenanthrene	μg/L	0.1	<0.1
	Anthracene	μg/L	0.1	<0.1
	Fluoranthene	μg/L	0.1	<0.1
	Pyrene	μg/L	0.1	<0.1
	Benzo(a)anthracene	μg/L	0.1	<0.1
	Chrysene	μg/L	0.1	<0.1
	Benzo(a)pyrene	μg/L	0.1	<0.1
	Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.1
	Dibenzo(a&h)anthracene	µg/L	0.1	<0.1
	Benzo(ghi)perylene	µg/L	0.1	<0.1
Surrogates	d5-nitrobenzene (Surrogate)	%	-	104
	2-fluorobiphenyl (Surrogate)	%	-	98
	d14-p-terphenyl (Surrogate)	%	-	124

Trace Metals (Dissolved) in Water by ICPMS

Sample Number	Parameter	Units	LOR	Result
LB092068.001	Arsenic, As	μg/L	1	<1
	Cadmium, Cd	μg/L	0.1	<0.1
	Chromium, Cr	μg/L	1	<1
	Copper, Cu	μg/L	1	<1
	Lead, Pb	μg/L	1	<1
	Nickel, Ni	μg/L	1	<1
	Zinc, Zn	µg/L	5	<5

TRH (Total Recoverable Hydrocarbons) in Water

TRH (Total Recoverable Hydrocarbons) in Water			Method: ME-(AL		
Sample Number	Parameter	Units	LOR	Result	
LB092026.001	TRH C10-C14	μg/L	50	<50	
	TRH C15-C28	μg/L	200	<200	
	TRH C29-C36	μg/L	200	<200	
	TRH C37-C40	μg/L	200	<200	

VOCs in Water				Method: ME-	(AU)-[ENV]AN433/AN434
Sample Number		Parameter	Units	LOR	Result
LB092056.001	Fumigants	2,2-dichloropropane	μg/L	0.5	<0.5
		1,2-dichloropropane	μg/L	0.5	<0.5
		cis-1,3-dichloropropene	μg/L	0.5	<0.5
		trans-1,3-dichloropropene	μg/L	0.5	<0.5
		1,2-dibromoethane (EDB)	μg/L	0.5	<0.5
	Halogenated Aliphatics	Dichlorodifluoromethane (CFC-12)	μg/L	5	<5
		Chloromethane	μg/L	5	<5
		Vinyl chloride (Chloroethene)	μg/L	0.3	<0.3
		Bromomethane	μg/L	10	<10
		Chloroethane	μg/L	5	<5
		Trichlorofluoromethane	μg/L	1	<1
		lodomethane	μg/L	5	<5
		1,1-dichloroethene	μg/L	0.5	<0.5
		Dichloromethane (Methylene chloride)	μg/L	5	<5
		Allyl chloride	μg/L	2	<2
		trans-1,2-dichloroethene	μg/L	0.5	<0.5
		1,1-dichloroethane	μg/L	0.5	<0.5
		cis-1,2-dichloroethene	µg/L	0.5	<0.5

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

mple Number		Parameter	Units	LOR	Result
92056.001	Halogenated Aliphatics	Bromochloromethane	µg/L	0.5	<0.5
		1,2-dichloroethane	µg/L	0.5	<0.5
		1,1,1-trichloroethane	µg/L	0.5	<0.5
		1,1-dichloropropene	µg/L	0.5	<0.5
		Carbon tetrachloride	µg/L	0.5	<0.5
		Dibromomethane	µg/L	0.5	<0.5
		Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	<0.5
		1,1,2-trichloroethane	μg/L	0.5	<0.5
		1,3-dichloropropane	μg/L	0.5	<0.5
		Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	<0.5
		1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5
		cis-1,4-dichloro-2-butene	μg/L	1	<1
		1,1,2,2-tetrachloroethane	μg/L	0.5	<0.5
		1,2,3-trichloropropane	μg/L	0.5	<0.5
		trans-1,4-dichloro-2-butene	μg/L	1	<1
		1,2-dibromo-3-chloropropane		0.5	<0.5
			μg/L		
		Hexachlorobutadiene	µg/L	0.5	<0.5
	Halogenated Aromatics	Chlorobenzene	μg/L	0.5	<0.5
		Bromobenzene	μg/L	0.5	<0.5
		2-chlorotoluene	μg/L	0.5	<0.5
		4-chlorotoluene	μg/L	0.5	<0.5
		1,3-dichlorobenzene	μg/L	0.5	<0.5
		1,4-dichlorobenzene	μg/L	0.3	<0.3
		1,2-dichlorobenzene	µg/L	0.5	<0.5
		1,2,4-trichlorobenzene	µg/L	0.5	<0.5
		1,2,3-trichlorobenzene	μg/L	0.5	<0.5
	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	µg/L	1	<1
		o-xylene	µg/L	0.5	<0.5
		Styrene (Vinyl benzene)	µg/L	0.5	<0.5
		Isopropylbenzene (Cumene)	µg/L	0.5	<0.5
		n-propylbenzene	µg/L	0.5	<0.5
		1,3,5-trimethylbenzene	μg/L	0.5	<0.5
		tert-butylbenzene	μg/L	0.5	<0.5
		1,2,4-trimethylbenzene	μg/L	0.5	<0.5
		sec-butylbenzene	μg/L	0.5	<0.5
		p-isopropyltoluene	μg/L	0.5	<0.5
		n-butylbenzene	μg/L	0.5	<0.5
	Nitrogenous Compounds	Acrylonitrile	μg/L	0.5	<0.5
	Oxygenated Compounds	Acetone (2-propanone)	μg/L	10	<10
	exygenated compounds	MtBE (Methyl-tert-butyl ether)	μg/L	2	<1
				10	<10
		Vinyl acetate	μg/L	10	<10
		MEK (2-butanone)	μg/L		
		MIBK (4-methyl-2-pentanone)	μg/L	5	<5
		2-hexanone (MBK)	µg/L	5	<5
	Polycyclic VOCs	Naphthalene	µg/L	0.5	<0.5
	Sulphonated	Carbon disulfide	μg/L	2	<2
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	118
		d4-1,2-dichloroethane (Surrogate)	%	-	117
		d8-toluene (Surrogate)	%	-	100
		Bromofluorobenzene (Surrogate)	%	-	93
	Trihalomethanes	Chloroform (THM)	μg/L	0.5	<0.5
		Bromodichloromethane (THM)	μg/L	0.5	<0.5
		Dibromochloromethane (THM)	μg/L	0.5	<0.5
		Bromoform (THM)	μg/L	0.5	<0.5
tile Petroleum Live	Irocarbons in Water			Method: ME-(AU)-[El	
				MENDULU, MENAUNCE	

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum Hydrocarbons in Water (continued)

Method: ME-(AU)-[ENV]AN433/AN434/AN410

Sample Number		Parameter	Units	LOR	Result
LB092056.001		TRH C6-C9	μg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	118
		d4-1,2-dichloroethane (Surrogate)	%	-	117
		d8-toluene (Surrogate)	%	-	100
		Bromofluorobenzene (Surrogate)	%	-	93

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved)	in Water					Method: ME	-(AU)-[ENV]AI	N311/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE147396.005	LB092266.017	Mercury	µg/L	0.0001	-0.0394	<0.0001	149	0

Trace Metals (Dissolved) in Water by ICPMS

Trace Metals (Dis	solved) in Water by IC	CPMS					Meth	od: ME-(AU)-	(ENVJAN31
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE147251.003	LB092068.014		Arsenic, As	µg/L	1	2.263	1.934	63	16
			Cadmium, Cd	µg/L	0.1	0.029	0.025	200	0
			Chromium, Cr	µg/L	1	0.303	0.366	200	0
			Copper, Cu	µg/L	1	4.128	4.23	39	2
			Lead, Pb	µg/L	1	0.224	0.207	200	0
			Nickel, Ni	µg/L	1	2.773	2.821	51	2
			Zinc, Zn	µg/L	5	24.695	25.299	35	2
SE147298.001	LB092068.024		Arsenic, As	µg/L	1	1.04	1.101	108	6
			Cadmium, Cd	µg/L	0.1	-0.008	-0.003	200	0
			Chromium, Cr	µg/L	1	0.241	0.227	200	0
			Copper, Cu	µg/L	1	3.84	3.79	41	1
			Lead, Pb	µg/L	1	0.061	0.082	200	0
			Nickel, Ni	µg/L	1	3.999	3.921	40	2
			Zinc, Zn	µg/L	5	6.533	11.331	71	54
/OCs in Water							Method: ME	-(AU)-[ENV]A	N433/AN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE147250.004	LB092056.018	Monocyclic	Benzene	µg/L	0.5	<0.5	0.14	200	0
		Aromatic	Toluene	μg/L	0.5	<0.5	0.32	186	0
			Ethylbenzene	μg/L	0.5	<0.5	0.05	200	0
			m/p-xylene	µg/L	1	<1	0.12	200	0
			o-xylene	μg/L	0.5	<0.5	0.05	200	0
		Polycyclic	Naphthalene	µg/L	0.5	<0.5	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	5.5	5.61	30	3
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.3	5.58	30	4
			d8-toluene (Surrogate)	µg/L	-	4.9	5.04	30	2
			Bromofluorobenzene (Surrogate)	µg/L	-	5.4	5.04	30	6
/olatile Petroleum	Hydrocarbons in Wa	iter				Metho	d: ME-(AU)-[E	ENVJAN433/A	N434/AN4 [,]
Original	Duplicate		Parameter	Units	LOR	Original	Duplica <u>te</u>	Criteria %	RPD %
SE147250.004	LB092056.018		TRH C6-C10	µg/L	50	<50	0	200	0
			TRH C6-C9	μg/L	40	<40	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	_	5.5	5.61	30	3
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.3	5.58	30	4
			d8-toluene (Surrogate)	μg/L	-	4.9	5.04	30	2
			Bromofluorobenzene (Surrogate)	μg/L		5.4	5.04	30	6
		VPH F Bands	Benzene (F0)	μg/L	0.5	<0.5	0.14	200	0
			TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	-0.68	200	0
				r 3/ =					-

SE147250 R0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Trace Metals (Dissolved) Sample Number LB092068.002 TRH (Total Recoverable I Sample Number LB092026.002		Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn	Units µg/L	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result 34 36 39 47 40 35 40 38 0.5 0.6 Result 19 20 21 22 21 21 21 21 21 21 21 21	Expected 20 20 20 20 20 20 20 20 20 20 20 20 20 20	Criteria % 60 - 140 60 - 140 40 - 130 40 - 120 80 -	85 90 97 118 101 89 99 95 90 94 124 J)-[ENV]AN3 Recovery 7 96 101 105 108 105 107 105
Sum Trace Metals (Dissolved) Sample Number LB092068.002 TRH (Total Recoverable I Sample Number LB092026.002	1) in Water by i	Acenaphthylene Acenaphthene Phenanthrene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) CPMS Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn a) in Water Parameter	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 - - - - - - 1 0.1 1 1 1 1 1	36 39 47 40 35 40 38 0.5 0.5 0.5 0.6 Result 19 20 21 22 21 22 21	40 40 40 40 40 0.5 0.5 0.5 0.5 0.5 Expected 20 20 20 20 20 20 20 20 20 20 20	60 - 140 60 - 140 40 - 130 40 - 130 40 - 130 40 - 130 Kethod: ME-(AL Criteria % 80 - 120 80 -	90 97 118 101 89 99 95 90 94 124 U)-[ENV]AN3 Recovery 9 96 101 105 108 105 107 105
race Metals (Dissolved) Sample Number .B092068.002 RH (Total Recoverable I Sample Number .B092026.002	1) in Water by i	Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) CPMS Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn s) in Water Parameter	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.1 0.1 0.1 0.1 0.1 0.1 - - - - - - - 1 1 1 1 1 1	39 47 40 35 40 38 0.5 0.5 0.5 0.6 Result 19 20 21 22 21 22 21	40 40 40 40 0.5 0.5 0.5 0.5 Expected 20 20 20 20 20 20 20 20 20 20 20 20	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 40 - 130 40 - 130 40 - 130 Kethod: ME-(AL Criteria % 80 - 120 80 -	97 118 101 89 99 95 90 94 124 J)-[ENV]AN: Recovery 96 101 105 108 105 107 105
race Metals (Dissolved) Sample Number B092068.002 RH (Total Recoverable I Sample Number B092026.002	1) in Water by i	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) CPMS Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn s) in Water Parameter	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.1 0.1 0.1 0.1 - - - LOR 1 0.1 1 1 1 1 1	47 40 35 40 38 0.5 0.5 0.6 Result 19 20 21 22 21 22 21 21	40 40 40 0.5 0.5 0.5 Expected 20 20 20 20 20 20 20 20 20 20 20 20	60 - 140 60 - 140 60 - 140 60 - 140 40 - 130 40 - 130 40 - 130 Kethod: ME-(AL Criteria % 80 - 120 80 -	118 101 89 99 95 90 94 124 J)-[ENVJAN: Recovery 96 101 105 108 105 107 105
race Metals (Dissolved) Sample Number B092068.002 RH (Total Recoverable I Sample Number B092026.002	1) in Water by i	Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) CPMS Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn s) in Water Parameter	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.1 0.1 0.1 - - - LOR 1 0.1 1 1 1 1 1	40 35 40 38 0.5 0.5 0.6 Result 19 20 21 22 21 22 21 21	40 40 40 0.5 0.5 0.5 Expected 20 20 20 20 20 20 20 20 20 20 20 20	60 - 140 60 - 140 60 - 140 60 - 140 40 - 130 40 - 130 40 - 130 Vethod: ME-(AL Criteria % 80 - 120 80 - 120	101 89 99 95 90 94 124 J)-[ENV]AN: Recovery 96 101 105 108 105 107 105
race Metals (Dissolved) Sample Number B092068.002 RH (Total Recoverable I Sample Number B092026.002	1) in Water by i	Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) CPMS Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn s) in Water Parameter	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.1 0.1 - - - LOR 1 0.1 1 1 1 1	35 40 38 0.5 0.5 0.6 Result 19 20 21 22 21 22 21 21	40 40 0.5 0.5 0.5 Expected 20 20 20 20 20 20 20 20 20 20 20 20 20	60 - 140 60 - 140 60 - 140 40 - 130 40 - 130 Vethod: ME-(AL Criteria % 80 - 120 80 - 120	89 99 95 90 94 124 U)-[ENV]AN Recovery 96 101 105 108 105 107 105
race Metals (Dissolved) Sample Number .B092068.002 RH (Total Recoverable I Sample Number .B092026.002	1) in Water by i	Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) CPMS Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn s) in Water Parameter	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.1 0.1 - - LOR 1 0.1 1 1 1 1 1	40 38 0.5 0.5 0.6 Result 19 20 21 22 21 21 21	40 40 0.5 0.5 0.5 Expected 20 20 20 20 20 20 20 20 20 20 20 20 20	60 - 140 60 - 140 40 - 130 40 - 130 Vethod: ME-(AL Criteria % 80 - 120 80 - 120	99 95 90 94 124 J)-[ENV]AN Recovery 96 101 105 108 105 107 105
race Metals (Dissolved) Sample Number .B092068.002 RH (Total Recoverable I Sample Number .B092026.002	1) in Water by i	Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) CPMS Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn s) in Water Parameter	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.1 - - - - - - - - - - - - - - - - - - -	38 0.5 0.5 0.6 Result 19 20 21 22 21 22 21 21	40 0.5 0.5 0.5 Expected 20 20 20 20 20 20 20 20 20 20 20 20 20	60 - 140 40 - 130 40 - 130 Vethod: ME-(AL Criteria % 80 - 120 80 - 120	95 90 94 124 J)-[ENV]AN Recovery 96 101 105 108 105 107 105
race Metals (Dissolved) Sample Number .B092068.002 RH (Total Recoverable I Sample Number .B092026.002	1) in Water by i	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) CPMS Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn s) in Water Parameter	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	- - - 1 0.1 1 1 1 1 1 1	0.5 0.5 0.6 Result 19 20 21 22 21 22 21 21	0.5 0.5 0.5 Expected 20 20 20 20 20 20 20 20 20 20 20 20 20	40 - 130 40 - 130 40 - 130 Wethod: ME-(AL Criteria % 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120	90 94 124 J)-[ENV]AN Recovery 96 101 105 108 105 107 105
race Metals (Dissolved) Sample Number .B092068.002 RH (Total Recoverable I Sample Number .B092026.002	1) in Water by i	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) CPMS Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn e) in Water Parameter	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	- - 1 0.1 1 1 1 1 1 1	0.5 0.6 Result 19 20 21 22 21 22 21 21	0.5 0.5 Expected 20 20 20 20 20 20 20 20 20 20 20	40 - 130 40 - 130 Vethod: ME-(AL Criteria % 80 - 120 80 - 120	94 124 J)-[ENV]AN Recovery 96 101 105 108 105 107 105
Sample Number LB092068.002 RH (Total Recoverable I Sample Number LB092026.002		d14-p-terphenyl (Surrogate) CPMS Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn a) in Water Parameter	μg/L Units μg/L μg/L μg/L μg/L μg/L μg/L μg/L	- LOR 1 0.1 1 1 1 1 1	0.6 Result 19 20 21 22 21 21 21	0.5 Expected 20 20 20 20 20 20 20 20 20 20 20	40 - 130 Method: ME-(AL Criteria % 80 - 120 80 - 120	124 J)-[ENV]AN Recovery 96 101 105 108 105 107 105
Sample Number LB092068.002 RH (Total Recoverable I Sample Number LB092026.002		CPMS Parameter Arsenic, As Cadmium, Cd Chomium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn s) In Water Parameter Parameter	Units μg/L μg/L μg/L μg/L μg/L μg/L	LOR 1 0.1 1 1 1 1 1	Result 19 20 21 22 21 21 21	Expected 20 20 20 20 20 20 20 20 20 20	Method: ME-(AL Criteria % 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120	J)-[ENV]AN Recovery 96 101 105 108 105 107 105
Sample Number LB092068.002 RH (Total Recoverable I Sample Number LB092026.002		Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn s) in Water Parameter	μg/L μg/L μg/L μg/L μg/L μg/L	1 0.1 1 1 1 1 1	19 20 21 22 21 21 21	Expected 20 20 20 20 20 20 20 20 20 20 20 20 20 20	Criteria % 80 - 120 80 - 120	Recovery 96 101 105 108 105 107 107
Sample Number LB092068.002 RH (Total Recoverable I Sample Number LB092026.002		Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn s) in Water Parameter	μg/L μg/L μg/L μg/L μg/L μg/L	1 0.1 1 1 1 1 1	19 20 21 22 21 21 21	Expected 20 20 20 20 20 20 20 20 20 20 20 20 20 20	Criteria % 80 - 120 80 - 120	Recovery 96 101 105 108 105 107 107
B092068.002 RH (Total Recoverable I Sample Number B092026.002	9 Hydrocarbons	Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn s) in Water Parameter	μg/L μg/L μg/L μg/L μg/L μg/L	1 0.1 1 1 1 1 1	19 20 21 22 21 21 21	20 20 20 20 20 20 20 20	80 - 120 80 - 120	96 101 105 108 105 107 105
RH (Total Recoverable I Sample Number .B092026.002	9 Hydrocarbons	Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn s) in Water Parameter	μg/L μg/L μg/L μg/L μg/L μg/L	0.1 1 1 1 1	20 21 22 21 21 21	20 20 20 20 20 20 20	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120	101 105 108 105 107 105
Sample Number LB092026.002	9 Hydrocarbona	Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn s) in Water Parameter	μg/L μg/L μg/L μg/L μg/L	1 1 1 1	21 22 21 21	20 20 20 20 20 20	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120	105 108 105 107 105
Sample Number LB092026.002	e Hydrocarbons	Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn s) in Water Parameter	μg/L μg/L μg/L μg/L	1 1 1	22 21 21	20 20 20 20	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120	108 105 107 105
Sample Number LB092026.002	e Hydrocarbons	Lead, Pb Nickel, Ni Zinc, Zn s) in Water Parameter	µg/L µg/L µg/L	1	21 21	20 20 20	80 - 120 80 - 120 80 - 120	105 107 105
Sample Number LB092026.002	e Hydrocarbona	Nickel, Ni Zinc, Zn s) in Water Parameter	μg/L μg/L	1	21	20 20	80 - 120 80 - 120	107 105
Sample Number LB092026.002	e Hydrocarbons	Zinc, Zn s) in Water Parameter	µg/L			20	80 - 120	105
Sample Number LB092026.002	e Hydrocarbons	s) in Water Parameter		5	21			
Sample Number LB092026.002	e Hydrocarbons	Parameter				I	Method: ME-(AL	J)-TENVIAN
LB092026.002								A President Road
		TRH C10-C14	Units	LOR	Result	Expected	Criteria %	Recovery
TRH			µg/L	50	1100	1200	60 - 140	90
TRH		TRH C15-C28	µg/L	200	1200	1200	60 - 140	101
TRH		TRH C29-C36	µg/L	200	1300	1200	60 - 140	105
	RH F Bands	TRH >C10-C16 (F2)	µg/L	60	1200	1200	60 - 140	99
		TRH >C16-C34 (F3)	µg/L	500	1200	1200	60 - 140	102
		TRH >C34-C40 (F4)	µg/L	500	640	600	60 - 140	106
/OCs in Water						Method	ME-(AU)-[ENV	
Sample Number		Deveneter	Units	LOR	Result	Expected	Criteria %	-
	ale second	Parameter		0.5				Recovery
	alogenated	1,1-dichloroethene	 µg/L	0.5	51	45.45	60 - 140	
Alipi	iphatics	1,2-dichloroethane	 µg/L		49	45.45	60 - 140	108
	- 1	Trichloroethene (Trichloroethylene,TCE)	 µg/L	0.5	50	45.45	60 - 140	110
	alogenated	Chlorobenzene	 µg/L	0.5	50	45.45	60 - 140	110
	onocyclic	Benzene	 µg/L	0.5	50	45.45	60 - 140	110
Aron	omatic		 µg/L	0.5	50	45.45	60 - 140	110
		Ethylbenzene	 µg/L	0.5	50	45.45	60 - 140	110
		m/p-xylene	 µg/L	1	100	90.9	60 - 140	110
		o-xylene	 µg/L	0.5	50	45.45	60 - 140	110
Surr	urrogates	Dibromofluoromethane (Surrogate)	 µg/L	-	4.2	5	60 - 140	83
		d4-1,2-dichloroethane (Surrogate)	 µg/L	-	4.2	5	60 - 140	83
		d8-toluene (Surrogate)	 µg/L	-	4.7	5	60 - 140	95
		Bromofluorobenzene (Surrogate)	 µg/L	-	5.9	5	60 - 140	118
Triha	ihalomethan	Chloroform (THM)	µg/L	0.5	50	45.45	60 - 140	110
olatile Petroleum Hydrod	ocarbons in W	ater				Method: ME-(Al	U)-[ENV]AN433	/AN434/AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recoverv
LB092056.002		TRH C6-C10	µg/L	50	950	946.63	60 - 140	101
· · · · · · · · · · · · · · · · · · ·		TRH C6-C9	 µg/L	40	780	818.71	60 - 140	95
Curr	urrogates	Dibromofluoromethane (Surrogate)	 μg/L	- 40	4.5	5	60 - 140	90
Sun		d4-1,2-dichloroethane (Surrogate)	 μg/L	-	4.9	5	60 - 140	98
				-		5		101
		d8-toluene (Surrogate)	 µg/L		5.0		60 - 140	
	PH F Bands	Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1)	 μg/L μg/L	50	4.6 650	5 639.67	60 - 140 60 - 140	92 102

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolve	d) in Water					Method: ME	E-(AU)-[ENV	JAN311/AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE147188.010	LB092266.004	Mercury	mg/L	0.0001	0.0084	<0.0001	0.008	106

Trace Metals (Dis	solved) in Water by ICPMS					Met	hod: ME-(AL	J)-[ENV]AN318
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE147247.001	LB092068.004	Arsenic, As	µg/L	1	27	0.428	20	131 ④
		Cadmium, Cd	μg/L	0.1	20	0.04	20	100
		Chromium, Cr	μg/L	1	29	9.842	20	95
		Copper, Cu	μg/L	1	20	2.18	20	91
		Lead, Pb	μg/L	1	20	0.13	20	99
		Nickel, Ni	µg/L	1	19	1.265	20	89
		Zinc, Zn	μg/L	5	21	6.014	20	75

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

SGS Environmental Services is accredited by NATA for Chemical Testing (Reg.No.2562) and Quality System compliance to ISO/IEC 17025. The QC parameters contained within are designed to meet NEPM 1999 requirements.

Quality Control samples included in any analytical run are listed below.

Reagent/Analysis Blank (BLK) Method Blank (MB)	Sample free reagents carried through the preparation/extraction/digestion procedure and analysed at the beginning of every sample batch analysis. A reagent blank is prepared and analysed with every batch of samples plus with each new batch of solvent prior to use.
Sample Matrix Spike (MS) & Matrix Spike Duplicate (MSD)	Sample replicates spiked with identical concentrations of target analyte(s). The spiking occurs during the sample preparation and <u>prior to the extraction/digestion procedure</u> . They are used to document the precision and bias of a method in a given sample matrix. Where there is not enough sample available to prepare a spiked sample, another known soil/sand or water may be used. A duplicate spiked sample is analysed at least every 20 samples.
Surrogate Spike (SS)	At least one but up to three surrogate compounds are added to all samples requiring analysis for organics prior to extraction. Used to determine the extraction efficiency. They are organic compounds which are similar to the target analyte(s) in chemical composition and behaviour in the analytical process, but which are not normally found in environmental samples. Where possible they are surrogate compounds recommended by the USEPA.
Control Matrix Spike (CMS)	To ensure spike recoveries can be determined for every batch of samples a control matrix is spiked with identical concentrations of target analyte(s) and then analysed. These results allow recoveries to be determined in the event that the matrix spikes are unusable (eg. matrix spikes performed on heavily contaminated samples). These are analysed at least every 20 samples.
Internal Standard (IS)	Added to all samples requiring analysis for organics (where relevant) after the extraction process; the compounds serve to give a standard of retention time and response, which is invariant from run-to-run with the instruments. Where possible they are standard compounds recommended by the USEPA.
Lab Duplicates (D)	A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.
Lab Control Standards/Samples (LCS)	Prepared from a source independent of the calibration standards. At least one control standard is included in each run to confirm calibration validity. Thereafter they are analysed at least every one in 20 samples plus at the end of each analytical run. This data is not reported.
Continuous Calibration Verification (CCV) or Calibration Check	A calibration check standard or CCV and blank are run after every 20 samples of an instrumental analysis run to assess analytical drift. Calibration Standards are checked old versus new with a criteria of ±10%
Standard & Blank	

Quality Assurance Programs are listed below:

Statistical analysis of Quality Control data (SQC)	Quality control data is plotted on control charts using the APHA procedure with warning and control limits at 2 and 3 standard deviations respectively. See also QMS Procedure "Statistical Quality Control".
Certified Reference Materials (CRM/SRM)	Certified Reference Materials and Standards are regularly analysed. These materials/standards have certified reference values for various parameters.
Proficiency Testing	Regular proficiency test samples are analysed by our laboratories. SGS Environmental participates in a number of programs. Results and proficiency status are compiled and sent to participating laboratory post data interpretation. Failure to comply with acceptable values result in further investigations.
Inter-laboratory & Intra- laboratory Testing	SGS Environmental Services has schedules in the Quality Systems to participate in Inter/Intra laboratory testing conducted internally and by other parties.
Data Acceptance Criteria Unless otherwise specified in the method or method manual the following general criteria apply to all inorganic tests.	 Failure to meet the internal acceptance criteria will result in sample batch repeats dependent upon investigation outcomes. For data to be accepted: <u>Inorganics (water samples)</u> For all inorganic analytes the Reagent & Method Blanks must be less than the LOR. The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within ±15%. Control Standards must be 80-120% of the accepted value. The Calibration Check Blanks must be less than the LOR. Lab Duplicates RPD to be <15%*. Note: If client <u>field</u> duplicates do not meet this criteria it may indicate heterogeneity and shall be noted on the data reports for QC samples. Sample (and if applicable Control) Matrix Spike⁴ Duplicate recovery RPD to be <30%. Where CRMs are used, results to be within ±2 standard deviations of the expected value. Inorganics (soil samples) For all inorganic analytes the Reagent & Method Blanks must be less
All recoveries are to be reported to 3 significant figures.	 For all horganic analytes the Reagent & Method Blanks must be less than the LOR. The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within [±]15%. Control Standards must be 80-120% of the accepted value. The Calibration Check Blanks must be less than the LOR. Lab duplicate RPD to be <30%* for sample results greater than 10 times LOR. Sample Matrix Spike Duplicate (MS[#]/MSD) recovery RPD to be <30%. In the event that the matrix spike has been applied to samples whose matrix or contamination is problematic to the method then these acceptance criteria apply to the Control Matrix Spike (CMS/D). Where CRMs are used, results to be within ± 2 standard deviations of the expected value.

	<u>Organics</u>
	 Volatile & extractable Reagent & Method Blanks must contain levels less than or equal to LOR.
	 The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within [±]25%. Some analytes may have specific criteria.
	 Control Standards (LCS/CMS) and Certified Reference Materials (CRM) recoveries are to be within established control limits or as a default 60-140% unless compound specific limits apply.
	 Retention times are to vary by no more than 0.2 min.
Data Acceptance Criteria Unless otherwise specified in the method or method manual the following general criteria	• At least two of three routine level soil sample Surrogate Spike (SS) recoveries are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as acceptance criterion. Any recoveries outside these limits will have comment.
All recoveries are to be reported to 3 significant figures.	• Water sample Surrogates Spike (SS) recoveries are to be within 40- 130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion. Any recoveries outside these limits will have comment.
	 Lab Duplicates (D) must have a RPD <30%*.
	 Sample Matrix Spike Duplicate (MS^{,*}/MSD) recovery RPD to be <30%. In the event that the matrix spike has been applied to samples whose matrix or contamination is problematic to the method then these acceptance criteria apply to the Control Matrix Spike (CMS/D).

*Only if results are at least 10 times the LOR otherwise no acceptance criteria for RPD's apply. Application of more stringent criteria shall be applied for clean water sample from water boards and any other nominated client contracts. Nominal 10xLOR criteria are dropped to 5xLOR where specified. ^AMatrix do not readily equate to definitive recovery due to inherent matrix interferences and thus do not have recovery compliance values set. As a guide inorganic recoveries should be between 70-130% and for organics 60-130%

Batch Structure Summary

An analytical batch is nominally considered as 20 samples or smaller. As a standard template the following should be **used as a guide** according to the above Quality Control Types:

1	MB	16	UNK DUP
2	STD1	17	MS
3	STD2	18	MS_DUP
4	STD3	19	UNK 11
5	LCS	20	UNK 12
6	BLK	21	UNK 13
7	UNK 1	22	UNK 14
8	UNK 2	23	UNK 15
9	UNK 3	24	UNK 16
10	UNK 4	25	UNK 17
11	UNK 5	26	UNK 18
12	UNK 6	27	UNK 19
13	UNK 7	28	UNK 20 (SS if applicable)
14	UNK 8	29	UNK_DUP
15	UNK 9	30	CCV
16	UNK 10 (SS if applicable)	31	CRM / SRM / CMS / LCS

Table QC1 - Containers, Preservation Requirements and Holding Times - Soil								
Parameter	Container Preservation		Maximum Holding Time					
Acid digestible metals and metalloids - Total and TCLP (As,Cd.,Cu,Cr,Ni,Pb,Zn)	Glass with Teflon Lid	Nil	6 months					
Mercury	Glass with Teflon Lid	Nil	28 days					
TPH / BTEX / VOC / SVOC / CHC	Glass with Teflon Lid	4°C, zero headspace	14 days					
PAHs (total and TCLP)	Glass with Teflon Lid	4°C ¹	14 days					
Phenols	Glass with Teflon Lid	4°C ¹	14 days					
OCPs, OPPs and total PCBs	Glass with Teflon Lid	4°C ¹	14 days					
Asbestos	Sealed Plastic Bag	Nil	N/A					

Table QC2 - Containers, Preservation Requirements and Holding Times - Water									
Parameter	Container Volume (mL)	Preservation	Maximum Holding Time						
Heavy Metals	125mL Plastic	Field filtration 0.45 μ m HNO ₃ / 4°C	6 months						
Cyanide	125mL Amber Glass	pH > 12 NaOH / 4°C	6 months						
TPH (C6-C9) / BTEX / VOCs SVOCs / CHCs	4 x 43mL Glass	HCI / 4°C ¹	14 days						
TPH (C10-C36) / PAH / Phenolics OCP / OPP / TDS / pH	3 x 1L Amber Glass	None / 4ºC ¹	28 days						

Notes: ¹ = Extraction within 14 days, Analysis within 40 days.

Table QC3 - Ar	alytical Paran	neters, PQLs	and Methods - Soil
Parameter	Unit	PQL	Method Reference
	Meta	ls in Soil	
Arsenic - As ¹	mg / kg	1	USEPA 200.7
Cadmium - Cd ¹	mg / kg	0.5	USEPA 200.7
Chromium - Cr ¹	mg / kg	1	USEPA 200.7
Copper - Cu ¹	mg / kg	1	USEPA 200.7
Lead - Pb ¹	mg / kg	1	USEPA 200.7
Mercury - Hg ²	mg / kg	0.1	USEPA 7471A
Nickel - Ni ¹	mg / kg	1	USEPA 200.7
Zinc - Zn ¹	mg / kg	1	USEPA 200.7
Tota	al Petroleum Hyd	rocarbons (TP	Hs) in Soil
C ₆ -C ₉ fraction	mg / kg	25	USEPA 8260
C ₁₀ -C ₁₄ fraction	mg / kg	50	USEPA 8000
C ₁₅ -C ₂₈ fraction	mg / kg	100	USEPA 8000
C ₂₉ -C ₃₆ fraction	mg / kg	100	USEPA 8000
	BTE	X in Soil	
Benzene	mg / kg	1	USEPA 8260
Toluene	mg / kg	1	USEPA 8260
Ethylbenzene	mg / kg	1	USEPA 8260
m & p Xylene	mg / kg	2	USEPA 8260
o- Xylene	mg / kg	1	USEPA 8260
	Other Organic C	ontaminants i	n Soil
PAHs	mg / kg	0.05-0.2	USEPA 8270
CHCs	mg / kg	1	USEPA 8260
VOCs	mg / kg	1	USEPA 8260
SVOCs	mg / kg	1	USEPA 8260
OCPs	mg / kg	0.1	USEPA 8140, 8080
OPPs	mg / kg	0.1	USEPA 8140, 8080
PCBs	mg / kg	0.1	USEPA 8080
Phenolics	mg / kg	5	APHA 5530
	As	bestos	
Asbestos	mg / kg	Presence / Absence	AS4964-2004

Notes:

1. Acid Soluble Metals by ICP-AES

2. Total Recoverable Mercury

Parameter	Unit	PQL	Method	Parameter	Unit	PQL	Method		
	Heavy Metals			Chlorinated Hydrocarbons (CHCs)					
Antimony - Sb	μg/L	1	USEPA 200.8	1,2-dichlorobenzene	μg/L	1	USEPA 8260B		
Arsenic - As	μg/L	1	USEPA 200.8	1,3-dichlorobenzene	μg/L	1	USEPA 8260B		
Beryllium - Be	μg/L	0.5	USEPA 200.8	1,4-dichlorobenzene	μg/L	1	USEPA 8260B		
Cadmium - Cd	μg/L	0.1	USEPA 200.8	1,2,3-trichlorobenzene	μg/L	1	USEPA 8260B		
Chromium - Cr	μg/L	1	USEPA 200.8	1,2,4-trichlorobenzene	μg/L	1	USEPA 8260B		
Cobalt - Co	μg/L	1	USEPA 200.8	Hexachlorobutadeine	μg/L	1	USEPA 8260B		
Copper - Cu	μg/L	1	USEPA 200.8	1,1,2-trichloroethane	μg/L	1	USEPA 8260B		
Lead - Pb	μg/L	1	USEPA 200.8	Hexachloroethane	μg/L	10	USEPA 8270D		
Mercury - Hg	μg/L	0.5	USEPA 7471A	Other CHCs	μg/L	1	USEPA 8260B		
Molybdenum - Mo	μg/L	1	USEPA 200.8	Volatile Orga		npound	s (VOCs)		
Nickel - Ni	μg/L	1	USEPA 200.8	Aniline	μg/L	10	USEPA 8260B		
Selenium - Se	μg/L	1	USEPA 200.8	2,4-dichloroaniline	μg/L	10	USEPA 8260B		
Silver - Ag	μg/L	1	USEPA 200.8	3,4-dichloroaniline	μg/L	10	USEPA 8260B		
Tin (inorg.) - Sn	μg/L	1	USEPA 200.8	Nitrobenzene	μg/L	50	USEPA 8260B		
Nickel - Ni	μg/L	1	USEPA 200.8	2,4-dinitrotoluene	μg/L	50	USEPA 8260B		
Zinc - Zn	μg/L	1	USEPA 200.8	2,4,6-trinitrotoluene	μg/L	50	USEPA 8260B		
	_	drocarb	ons (TPHs)	Phenolic Compounds					
C ₆ -C ₉ fraction	μg/L	10	USEPA 8220A / 8000	Phenol	μg/L	10	USEPA 8041		
C ₁₀ -C ₁₄ fraction	μg/L	50	USEPA 8000	2-chlorophenol	μg/L	10	USEPA 8041		
C ₁₅ -C ₂₈ fraction	μg/L	100	USEPA 8000	4-chlorophenol	μg/L	10	USEPA 8041		
C ₂₉ -C ₃₆ fraction	μg/L	100	USEPA 8000	2, 4-dichlorophenol	μg/L	10	USEPA 8041		
	BT	EX		2,4,6-trichlorophenol	μg/L	10	USEPA 8041		
Benzene	μg/L	1	USEPA 8220A	2,3,4,6-tetrachlorophenol	μg/L	10	USEPA 8041		
Toluene	μg/L	1	USEPA 8220A	Pentachlorophenol	μg/L	10	USEPA 8041		
Ethylbenzene	μg/L	1	USEPA 8220A	2,4-dinitrophenol	μg/L	10	USEPA 8041		
m- & p-Xylene	μg/L	2	USEPA 8220A	Miscella	aneous	Paramet	ters		
o-Xylene	μg/L	1	USEPA 8220A	Total Cyanide	μg/L	5	APHA 4500C&E-CN		
Polyciclic Are	omatic F	lydrocai	rbons (PAHs)	Fluoride	μg/L	10	APHA 4500 F-C		
PAHs	μg/L	0.1	USEPA 8270	Salinity (TDS)	mg/L	1	APHA 2510		
Benzo(a)pyrene	μg/L	0.01	USEPA 8270	рН	units	0.1	APHA 4500H+		
OrganoCl	hlorine F	Pesticide	es (OCPs)	OrganoPhos	phate P	esticide	s (OPPs)		
Aldrin	μg/L	0.001	USEPA 8081	Azinphos Methyl	μg/L	0.01	USEPA 8141		
Chlordane	μg/L	0.001	USEPA 8081	Chloropyrifos	μg/L	0.01	USEPA 8141		
DDT Dieldrin	μg/L	0.001	USEPA 8081	Diazinon Dimethoate	μg/L	0.01	USEPA 8141		
Dieldrin Endosulfan	μg/L	0.001	USEPA 8081 USEPA 8081	Dimethoate Fenitrothion	μg/L	0.01	USEPA 8141 USEPA 8141		
Endrin	μg/L μg/L	0.001	USEPA 8081	Malathion	μg/L μg/L	0.01	USEPA 8141 USEPA 8141		
Heptachlor	μg/L μg/L	0.001	USEPA 8081	Parathion	μg/∟ μg/L	0.01	USEPA 8141 USEPA 8141		
Lindane	μg/L μg/L	0.001	USEPA 8081	Temephos	μg/L μg/L	0.01	USEPA 8141		
Toxaphene	μg/L	0.001	USEPA 8081	Polychlorin					
-	- '6' -			Individual PCBs	μg/L	0.01	USEPA 8081		

Table QC4 - Analytical Parameters, PQLs and Methods - Groundwater

ТТ	able QC5 - QC Sample Data Acce	ptance Criteria		
QC Sample Type	Method of Assessment	Acceptable Range		
	Field QC			
Blind Duplicates and Split Samples	The assessment of split duplicate is undertaken by calculating the Relative Percent Difference (RPD) of the duplicate concentration compared with the primary sample concentration. The RPD is defined as: $RPD = 100 \text{ x} \frac{ X_1 - X_2 }{\text{mean}(X1, X2)}$ Where: X ₁ and X ₂ are the concentrations of the primary and duplicate samples.	 The acceptable range depends upon the levels detected: 0-150% RPD (when the average concentration is <5 times the LOR/PQL) 0-75% RPD (when the average concentration is 5 to 10 times the LOR/PQL) 0-50% RPD (when the average concentration is >10 times the LOR/PQL) 		
Rinsate & Trip Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>		
Laboratory prepared Trip Spike	The Trip Spike is analysed after returning from the field and the % recovery of the known spike is calculated.	70 - 130%		
	Laboratory QC			
Laboratory Duplicates	Assessment of Lab Duplicate RPD as per Blind Duplicates and Split Samples.	Lab Duplicate RPD < 15% (Inorganics) Lab Duplicate RPD < 30% (Organics) for sample results > 10 LOR		
Surrogates	Assessment is undertaken by determining the percent recovery of the known surrogate spike (SS) or addition to the sample.	at least 2 SS recoveries to be within 70-130% subject to matrix effects (Organics)		
Matrix Spikes Laboratory Control Samples	% Recovery = 100 x $\frac{\text{C} - \text{A}}{\text{B}}$ Where: A = Concentration of analyte determined in the original sample; B = Added Concentration; and C = Calculated Concentration.	80-120% (Inorganics / Metals) 60-140% (Organics) 10-140% (SVOC and Speciated Phenols) If the result is outside the above ranges, the result must be <3x Standard Deviation of the Historical Mean (calculated over the past 12 months).		
Sample Matrix Spike Duplicates	Recovery RPD	<30% (Inorganics & Organics)		
Calibration Check Standars	Continuous Calibration Verification (CCV)	CCV must be within ±15% (inorganics) CCV must be within ±25% (inorganics)		
Reagent, Method & Calibration Check Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>		
Note: PQL - Laboratory Practica LOR = Limit of Reporting	al Quantitation Limit (PQL) or the minimum detection I	imit for a particular analyte.		

1 OBJECTIVE

This procedure will be used by the laboratory to comply with NEPM requirements for QA/QC reporting (and is typical of other regulatory requirements).

This procedure is applicable to all Environmental samples eg from Environmental Consultants. Samples from non-Environmental Consultants such as Councils, mines or trade waste etc do not necessarily have to conform with these requirements, however, it will be the Envirolab Group's default policy that this procedure be used whenever possible.

2 DEFINITIONS

Duplicate

This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Blank

This is the component of the analytical signal which is not derived from the sample but from reagents, glassware, instrument etc, can be determined by processing solvents, acids and reagents in exactly the same manner as for samples. Other terms cited in literature, but not used here include: Reagent Blank, Control Blank, Method Blank.

Matrix Spike

A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. Other terms cited in literature include Laboratory Fortified Matrix. It is suggested that the spiking concentration be near the middle of the working calibration range.

Surrogate Spike

Surrogates are known additions to each standard, sample, blank, matrix spike and LCS in a process batch, of compounds which are similar to the analyte of interest in terms of:

- a) extraction
- b) recovery through clean up procedures
- c) response to chromatography or other determinations

but which:

- d) are not expected to be found in real samples
- e) will not interfere with quantification of any analyte of interest
- f) may be separately and independently quantified

These are only applicable to organic testing.

Internal Standards

Internal standards are used to check the consistency of the analytical step (e.g. injections, retention times, potential instrument suppression/enhancement etc) and provide a reference against which results may be adjusted in case of variation. For many organic and metals analyses, internal standards are added after all extraction, cleanup and concentration steps, to each final extract solution/sample/standard.

LCS (Laboratory Control Sample)

This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Other terms cited in literature include: laboratory control standard, quality control check sample, laboratory fortified blank.

Process Batch

A group of samples which behave similarly with respect to the sampling or the testing procedures being employed and which are processed as a unit for QC purposes. It is important that all factors within a process batch be the same. If any factors change e.g. reagents, staff, standards then a new process batch is deemed to have begun. A process batch is considered to be ≤ 20 samples.

Percent Recovery

Percent recovery describes the capability of the method to recover a known amount of analyte added to the sample.

% Recovery = C-A / B x 100

where: A = natural concentration of analyte in the sample

B = concentration of analyte added to the sample

C = concentration of analyte determined in the spiked sample

RPD (Relative Percent Difference)

This calculation measures the precision between two figures. Commonly used to compare the precision of Duplicate results.

% RPD = ((Highest – Lowest)/Average) x 100

3 QC REQUIRED AND WHAT IS REPORTED

The following QC is required for all Environmental Samples, unless justified otherwise by a Manager/Supervisor.

Blank

At least one per process batch. The Blanks must be labelled throughout the day e.g.: Bk_1 , Bk_2 etc. The Blank is analysed at a rate of one per <20 samples.

LCS

At least one per process batch. The LCS's must be labelled throughout the day e.g.: LCS_1, LCS_2 etc. The LCS is reported to all clients at a rate of one per \leq 20 samples.

Duplicate

At least one per ten samples i.e. a Duplicate is carried \leq 10 samples. So, if there is one process batch of 100 samples there will be at least 10 Duplicates. There are instances where there is insufficient sample for a duplicate analysis and hence the frequency will not apply, however, every effort will be made to perform a duplicate in each process batch (water volumes supplied for VOC and SVOC are often insufficient).

The Duplicate is only reported to the client if it is performed on their sample.

Matrix Spike

One for each soil/water/air sample (where applicable) type e.g.: if a batch contains soils/waters/air samples then a matrix spike must be done on each sample type at a frequency of 5%, typically a matrix spike is carried out where \geq 5 samples and then every 20.

The sample type is generally recorded on the Chain of Custody. If a client calls all samples 'soil' then we will treat all samples as 1 sample type (unless they are very obviously different). If there is only one sample type e.g. soil, then a matrix spike is performed every 20 samples.

There is no requirement in NEPM for a Matrix Spike Duplicate.

The Matrix Spike is only reported to the client if it is performed on their sample.

Certified/Standard Reference Materials

Where available, CRMs/SRMs are analysed (particularly during validation/verification). Due to the high cost and lack of stability of many CRMs/SRMs, the frequency of analysis is relatively low. Typically SRMs are run for Metals only (e.g. AGAL series 6, 10, 12 for example) as they are cost effective and stable over a long period of time. Therefore once a week or once a month is not uncommon.

4 ACCEPTANCE CRITERIA

If QC fails, take corrective action promptly to determine and eliminate the source of the error. Do not report data until the cause of the problem is identified and either corrected or qualified by a supervisor.

Matrix Spikes

As a general rule, the recoveries of most analytes spiked into samples should fall within the range 60% - 140% and this range should be used as a guide in evaluating in house performance, exceptions exist within individual methods. (*see tables 1-3 below for global acceptance criteria*).

Matrix Spikes will regularly fail, often due to matrix interferences. If a Matrix Spike fails it should be investigated:

a) check calculations and transcriptions to ensure a mistake has not been made.

b) look at the background concentration of the sample. If sample background is high then recovery can be affected (sample heterogeneity). A useful rule of thumb is where background concentration of an analyte is >3* the spike level then the spike recovery is n/a, however, where the sample is very non-homogenous acceptable spike recovery may be difficult. As long as the LCS is acceptable (*see below*) then the Process Batch will be accepted.

c) If the LCS has also failed then the Process Batch is deemed to have failed and data should not be reported unless justified. The batch should be repeated after consultation with the supervisor, possibly replacing standards or reagents (see guidelines below).

If a matrix spike has failed yet the process batch has been accepted by the supervisor, the failed

ENVIROLAB GROUP PROCEDURE – ELN-P05 QA/QC PROCEDURE v7 Page 4 of 11

matrix spike should still be reported to the client (unless the spiked sample has very high background levels). This should be accompanied by an appropriate comment such as 'percent recovery not available due to significant background levels of analyte in the sample' or 'the matrix spike recovery was outside recommended acceptance criteria, however, an acceptable recovery was achieved for the LCS. This indicates a sample matrix interference'.

Matrix spikes are not carried out for all tests. These exceptions are mainly the inorganic tests such as TSS, pH, EC etc. and OHS samples (tubes/badges/filters/swabs etc) where all the sample is extracted as opposed to a portion. In these cases an acceptable LCS is required.

Matrix spikes are also not reported for all analytes. For example in a SVOC run of >100 analytes it is acceptable to only spike a range of analytes e.g. some PAHs, some OCP, some OPP, some speciated Phenols etc.

Duplicates

Acceptable Duplicate data is judged by % RPD.

See tables 1-3 below for acceptance criteria, the acceptance criteria will increase as the analyte concentration approaches the PQL as measurement uncertainty will become a more significant factor.

If a water duplicate fails then repeat the analysis (if there is sufficient sample left). If the RPD% fails again it is likely to be due to a non-homogeneity or a matrix issue and an appropriate comment should be applied to the report such as 'the duplicate is outside acceptable %RPD, reanalysis indicates possible sample heterogeneity'. All failed duplicate results should be reported, a triplicate should be reported to illustrate analyte variability where applicable. *Poor reproducibility for water samples is rare unless the sediment loading is significant*.

If a soil duplicate fails then it should be repeated (if there is sufficient sample left). If the RPD% fails again it is likely to be due to a matrix non-homogeneity issue and an appropriate comment should be applied to the report such as 'the duplicate is outside acceptable %RPD, reanalysis indicates possible sample heterogeneity'. All failed duplicate results should be reported and a triplicate should be reported to illustrate analyte variability where applicable. Soil matrices are a common issue with poor analyte precision given samples are typically prepared field moist

If an air duplicate fails then it should be repeated (if there is sufficient sample left). Duplicates for air samples are only applicable for canister and air sample (tedlar) bag analyses, precision failures should be rare given the relative simplicity of the matrix, however variation will be higher near reporting limits (PQL).

Internal Standards

Acceptance criteria for internal standards are 70-130% for Metals and 50-150% for Organics, note exceptions may exist in individual methods – see tables 1 and 3 below.

If internal standards exceed this criteria they will need to be either re-vialed and re-run for organics or diluted and re-run for metals. If they continue to fail consult the supervisor.

Surrogates

Surrogate recoveries should generally be within the range of 60-140%, table 3 below.

High analyte concentrations may cause surrogates to fail – this needs to be annotated on the final report (e.g. for svTRH).

The surrogate recovery in BLKs and LCSs should be within Global Acceptance Criteria (GAC) or Analyte Specific Acceptance Criteria (ASAC) for labile surrogates (e.g. d5-phenol etc.). The GAC and ASAC are discussed in more detail below.

Certified/Standard Reference Materials

CRMs/SRM recoveries should generally be within the range of 70-130%. Some certified levels are below or within 10*PQL and therefore ±30% tolerance is not achievable on all instruments (e.g. some elements in AGAL12 will struggle with this criteria on ICP-OES but should be achieved on ICP-MS due to higher uncertainty based on PQL differences for the two instruments).

Global Acceptance Criteria (GAC) for Matrix Spikes, LCS and BLKS

The criteria specified below covers >90% of the analytes determined by the laboratory, however due to limitation of the methodology and/or the labile nature of some analytes there are analytes whose recovery is outside of this acceptance criteria (GAC). Therefore *Analyte Specific Acceptance Criteria* (ASAC) is applied for these analytes. The ASAC is determined from 6-12 months of LCS recovery data and is Defined as 3 x std dev from the mean LCS recovery %.

See GAC in the tables below.

	ICV	ссч	Internal Standards	LCS	PQL std	Calibration Blank	Matrix Spikes#	%RPD≥ 10*PQL [®]	5*PQL≥sample %RPD<10*PQL [®]	%RPD<5*PQL
Dissolved Waters	±10%	±20%	70-130%	±20%	±50%	<1/2*PQL std	±30%	20	50	any
Impingers	<mark>±10%</mark>	<mark>±20%</mark>	<mark>70-130%</mark>	<mark>±20%</mark>	<mark>±50%</mark>	<1/2*PQL std	<u>+30%</u>	<mark>30</mark>	50	any
Total Waters	±10%	±20%	70-130%	±20%	±50%	<1/2*PQL std	±30%	30	50	any
Soils/Paint/Filters (if cut in pieces)	±10%	±20%	70-130%	±30%	±50%	<1/2*PQL std	±30%	40	50	any

Table 1 – Metals GAC

n/a where background is $\geq 3^*$ spike level

@ where an original and duplicate result are above and below a cut off (5* and 10*PQL), then the mean of the two defines the criteria used.

Table 2 – Inorganics GAC

	ICV (LCS in many cases)	ссу	PQL std	Calibration Blank	LCS	Matrix Spikes#	%RPD <u>></u> 10*PQL [@]	5*PQL <u>></u> sample %RPD<10*PQL [®]	%RPD<5*PQL
Waters - Nutrients no preparation	±20%	±20%	±50%	<1/2*PQL std	±20%	±30%	20	50	any
Waters digested/distilled	±20%	±20%	±50%	<1/2*PQL std	±20%	±30%	30	50	any
Impingers	<mark>±20%</mark>	<mark>±20%</mark>	<mark>±50%</mark>	<1/2*PQL std	<mark>±20%</mark>	<mark>±30%</mark>	30	50	any
Soils/Filters (if cut in pieces)	±20%	±20%	±50%	<1/2*PQL std	±30%	±30%	30	50	any

n/a where background is \geq 3* spike level

@ where an original and duplicate result are above and below a cut off (5* and 10*PQL) then the average defines the criteria used.

Table 3 - Organics (includes Air Toxics unless specified in the method) GAC (TD tubes are an exception for field duplicates)

	ICV (LCS in many cases)	CCV*	Internal Stds	PQL std	Calibration Blank	LCS ^{\$}	Matrix Spikes# ^{\$} and Surrogates	%RPD <u>></u> 5*PQL (although sampling may be the source of error)	%RPD<5*PQL
Waters/Air Toxic - VOC	±20%	±20%	50-150%	±50%	n/a	±20%	±40%	30	any
Waters extracted	±20%	±20%	50-150%	±50%	n/a	±40%	±40%	50	any
Soils	±20%	±20%	50-150%	±50%	n/a	±40%	±40%	50	any

n/a where background is $\geq 3^*$ spike level

\$ - there will be exception to this rule as some analytes are particularly labile and recovery as low as 10% has been documented in the literature (see ASAC).

@ where an original and duplicate result are above and below a cut off (5* and 10*PQL) then the average defines the criteria used.

See MICRO/ASBESTOS and ASS methods for acceptance criteria in those sections.

Decision Path for LCS

As a general rule, the recoveries of most LCS's should fall within the ranges specified in the tables above.

If an LCS fails it should be investigated:-

a) check calculations and transcriptions to ensure a basic mistake has not been made.

b) If all other QC has passed, repeat the LCS analysis. If the LCS fails again it should be remade and re-analysed.

c) If the LCS fails after the second attempt there could be a problem with the LCS and hence the procedure – consult the supervisor.

If the failure is specific to the LCS then the Process Batch may be acceptable, if not, then repeat the process batch (if sufficient sample available). If insufficient sample is available then the data must be qualified with respect to the LCS result (for example a surrogate is half the expected value for all samples and LCS, this may be due to a setting on a pipette and is not reflective of poor extraction efficiency).

d) If the LCS fails the criteria in the GAC tables above, then compare to the ASAC for the individual analytes (i.e. 3 x stdev of LCS over 6-12 months). If within these criteria then the LCS is acceptable as long as above 10% recovery. Recovery below this limit implies the analytical method in not fit for purpose and hence the data must be qualified accordingly if reported.

There should be an LCS available for >99% of tests (exceptions include Asbestos for example).

Practical Quantitation Limit Checks (PQLs)

As can be seen from the tables above, a PQL standard run in the calibration or as a sample can be used to confirm the ability to determine the PQL on a sequence by sequence basis. This negates the need for MDL studies as the PQL is confirmed for each analytical sequence.

5 CHECKING THE CORRECTNESS OF ANALYSIS (see also form 346)

Anion Cation Balance

The anion and cation sums, when expressed as milliequivalents per litre, must approximately balance because all potable waters are electrically neutral.

As a minimum ion balance is determined from cations:-Na/Ca/Mg/K and anions:- Alk/Cl/SO₄.

The full calculation can be found in APHA and Form 213 - Mass Balance Calculation sheet can be used to determine the ion balance in Excel.

The acceptance criteria in APHA are very strict as they are based on potable water. The environmental waters we receive could rarely be termed potable so our % Difference has been determined to be $\pm 15\%$, with supervisor discretion.

If the % is >15% for "cation total Meq vs anion total Meq" then there is a possibility of gross error and reruns/checks may be necessary. If the result is confirmed then an appropriate comment must accompany the report such as 'the mass imbalance may be caused by other ions that have not been measured'. Extremes of pH can also cause an imbalance.

TDS v lons

Measured TDS should be similar or greater than ion calculated TDS. This is because the calculation will normally not involve ions such as F, Si, NO₃ etc.

Note, as a guide in mg/L:-

 $0.6(alk) + Cl + SO_4 + Na + Ca + Mg + K + = Approx TDS.$

Measured EC and Ion sums

Both the anion & cation sums (expressed as meq) should be 1/100 of the measured EC value. If either of the 2 sums does not meet this criteria, that sum is suspect.

The calculation is: 100 x anion (or cation sum) meq/L = (0.9-1.1 EC).

The full calculation can be found in APHA or use the spreadsheet i.e. Form 213 - Mass Balance Calculation sheet v1. Note another useful rule of thumb is that Chloride (mg/L) is $^{1}/_{3}$ of EC.

Measured TDS to EC Ratio

EC x (0.55-0.7) = TDS.

If it is outside this criteria one of the tests may be suspect. The exception is waters with high colloidal particulates that may contribute to a higher measured TDS result.

Metals – Total Recoverable v Dissolved.

In theory Total recoverable metals must be equal or higher than dissolved metals for the same water sample. If the difference is within the uncertainty of the individual tests then this should be noted on the worksheets. If the difference is outside the uncertainty of the individual tests then one of the results is suspect and should be re-analysed for confirmation/denial.

Metals – CrVI vs total dissolved Cr and Fell vs total dissolved Fe

The sample preservation for hexavalent Chromium, Ferrous Iron and the total dissolved Chromium and Iron are from different preservations. Hence different bottles are used during sampling which can lead to variations in results given:-

 $Cr^{VI} \leq$ total dissolved Cr and Fe^{II} \leq total dissolved Fe (taking into account some MU in analysis)

A common source of error is where samples for Cr^{VI} and Fe^{II} are not field filtered (into caustic and HCI preserved containers respectively), whereas the total dissolved metals are field filtered into HNO₃ preserved bottles. Therefore interaction with sediment can lead to higher Cr^{VI} and Fe^{II} numbers than would be given if filtered. Therefore, where this occurs a note should be recorded on the report and/or communicated to the customer/sampler.

Organics

Some simple checks to be aware of include:

 C_6 - C_{10} should generally be greater than BTEX.

 $>C_{10}$ - C_{36} should generally be greater than PAH.

Naphthalene in the VOC run should be similar to PAH (SVOC) run, however where the soil is non-homogenous then poor precision may exist. Additionally two different solvent mixes are used which can lead to variability in extraction efficiency.

Nutrients

TKN should be greater than or equal to Ammonia. If the difference is within the uncertainty of the individual tests then this should noted on the worksheets. If the difference is outside the uncertainty of the individual tests then one of the results is suspect and should be reanalysed for confirmation/denial. Use of different bottle for TKN and Ammonia can cause anomalies do to sampling variability.

See form 346 for more detail on checking correctness of data.

6 CONTROL CHARTS

Control Charts can be generated from LIMS as required. LCS data is used to construct these charts. LCS data is a good indication of the health of the method.

Matrix spike and duplicate data can vary significantly due to the nature of certain matrices so are not considered an ideal measure. If a MS result is grossly out due to a known interference then control data will be invalidated as the result is an outlier.

Control charts can used to monitor trends and should alert the analyst to potential problems. In theory all plotted data should lie within 2SD (Warning Limits =WL) of the mean or within the target recovery (e.g. GAC and ASAC recovery limits discussed above).

Results outside the CL or outside the target recovery (e.g. GAC and ASAC recovery limits discussed above) should not be accepted unless there is a valid, documented reason.

7 STANDARDS / CALIBRATIONS

Calibration standards are purchased either in commercial mixes that are traceable to NIST (wherever possible with CoAs) and/or as neat compounds/salts. Where possible, purity of neat compounds/salts is >>95% (as high as available but still cost effective). Standards used for calibration are prepared (working standards) as required and allocated a shelf life in accordance with the methods (in house and via international standards) and in consultation with approved suppliers and senior staff experience.

Calibration standards are verified by an independently sourced standard (where available) as described within individual methods. Standards that are used beyond the specified shelf-life (e.g. the default shelf-life for many commercial standards) must be verified by a standard that is within the specified shelf-life.

Note, inorganic salts with purity >>95% (>99% preferable) typically have a shelf life >10 years (the shelf life is typically not specified by the supplier). The standards from such salts are checked versus other sources of analyte regardless, for example a working standard from a NaNO₃ salt (as a Nitrate source) could be confirmed as acceptable for use by checking versus a working standard prepared from a KNO₃ salt (or a commercial mix of NO₃ where a CoA is supplied).

Calibration

In general calibrations are linear or linear through zero (i.e. through the blank). Exceptions to this rule occur where the chemistry is non-linear (e.g. some colourimetric chemistry) and quadratic fits can be used. Another example would be for labile Organic analytes where, for example, breakdown and/or adsorption effects become significant, therefore quadratic fits become necessary.

Calibration curves are constructed for each daily sequence for most instrumentation, the

exceptions would be for some colourimetric chemistries where the reagents are very stable (e.g. $NH_3/NO_3/PO_4/CrVI/TKN$) and also for some GC-MS/ECD analyses where acceptable response is maintained for all analytes (can be confirmed with PQL standard analyses and S/N observation). To confirm the validity of the calibration curves an Independent Calibration Check (ICV) is run with a tolerance of ±20% of expected result (as described below).

For most methods an Independent Calibration Check (ICC or ICV where V = verification) is analysed straight after the calibration. This should be an independent check (i.e. made from another standard source) and acceptance is defined in the tables 1-3 in section 4 above. If it is outside this acceptance criteria, a new calibration may be necessary and/or calibration standards should be re-prepared and/or the Independent Calibration Check should be re-prepared.

Results may only be reported if within the calibration range (exceptions include ICPOES/IC/FID where linearity way beyond the top standard has been demonstrated in validation data). Results +10% beyond the top standard are acceptable in general where linear calibrations are used, *not* where quadratics are used.

The correlation coefficient (R^2) should be >0.995 for the vast majority of analytes (individual methods may have specific criteria). Where failures occurs, calibration points may be removed as a last resort (e.g. for a poor injection where internal standards are indicative) and should be a rarity as opposed to normal practice. In general 3-5 calibration standards are used to generate a response curve and/or a Continuing Calibration Verification (CCV) standard is run to ensure signal to noise is maintained.

Continuing Calibration

A continuing calibration is analysed approximately every 20 samples and at the end of the run. Acceptance should be $\pm 20\%$. If it is outside this acceptance a new calibration will be necessary (the ability to maintain the detection limit (PQL) is a requirement i.e. run the PQL standard as described above with the required acceptance criteria (tables 1-3)).

New v's Old Standard Checks

New standards should always be compared to the old with an acceptance of $\pm 10\%$.

Expired Standards

Standards that have expired may still be used, however, need to be verified against another in date standard, CRM or confirmed by another lab. The expiry date may then be extended a further 6 months (or less as deemed appropriate). For some analytes, such as metals, extending the expiry date for many years may be acceptable as there is known stability.

8 Intralaboratory Check Samples

Soils –

Internally prepared reference materials can be used to check the validity of analysis. Typically for soil, customer samples are collated and are then air dried, homogenised and sieved. The analyte concentrations are then determined by analysing 7-10 replicates to achieve a mean with an RSD% \leq 30% (although concentration dependant). The results can then be internally (Melbourne \leftrightarrow Perth \leftrightarrow Sydney lab) verified and/or externally verified with another NATA accredited facility.

Once an acceptable mean and acceptance criteria has been established (professional judgement of the senior chemists can be utilised here), then the material can then be analysed periodically to check laboratory performance. Alternatively, if available, confirm against a CRM/SRM.

Other non-certified reference materials can be used to assess laboratory performance if suitably verified data has been generated (e.g. ELIG soil where 10 labs participated in generating data).

Waters -

The R&D Manager or delegate will periodically prepare QC samples for an ILCP between the labs in the Envirolab Group. Samples may be prepared from standard solutions, independant check solutions and/or solutions remaining from previous proficiency programs (stability may have to be ascertained. These solutions will generally be of known concentration.

Spike solutions using products may also be prepared for comparison purposes e.g. petrol for TRH/BTEX or Diesel for PAHs etc.

Table QC1 - Containe	Table QC1 - Containers, Preservation Requirements and Holding Times - Soil									
Parameter	Container	Preservation	Maximum Holding Time							
Acid digestible metals and metalloids - Total and TCLP (As,Cd.,Cu,Cr,Ni,Pb,Zn)	Glass with Teflon Lid	Nil	6 months							
Mercury	Glass with Teflon Lid	Nil	28 days							
TPH / BTEX / VOC / SVOC / CHC	Glass with Teflon Lid	4°C, zero headspace	14 days							
PAHs (total and TCLP)	Glass with Teflon Lid	4°C ¹	14 days							
Phenols	Glass with Teflon Lid	4°C ¹	14 days							
OCPs, OPPs and total PCBs	Glass with Teflon Lid	4°C ¹	14 days							
Asbestos	Sealed Plastic Bag	Nil	N/A							

Table QC2 - Containe	Table QC2 - Containers, Preservation Requirements and Holding Times - Water									
Parameter	Container Volume (mL)	Preservation	Maximum Holding Time							
Heavy Metals	60mL Plastic	Field filtration 0.45µm HNO ₃ / 4°C	6 months							
Mercury	60mL Plastic	Field filtration 0.45µm HNO ₃ / 4°C	6 months 2 8 days							
Cyanide	125mL Amber Glass or 125mL Opaque HDPE	pH > 12 NaOH / 4°C	6 months 14 days							
TPH (C6-C9) / BTEX / VOCs SVOCs / CHCs	4 x 44mL Glass	HCI / 4°C ¹ or Sodium Bisulphate	14 days							
TPH (C10- C40) / PAH / Phenolics OCP / OPP / TDS / pH	3 x 1L Amber Glass	None / 4ºC ¹	28 days (TDS is 7 days, pH is ideally a field test and should be analysed ASAP)							

Notes: 1 = Extraction within 14 days, Analysis within 40 days.

Parameter	Unit	PQL	Method Reference	
	-	Meta	als in Soil	
Arsenic - As ¹	mg / kg	4	USEPA 200.7 (also reference USEPA 6010C and 3050)	
Cadmium - Cd ¹	mg / kg	0.4	USEPA 200.7 (also reference USEPA 6010C and 3050)	
Chromium - Cr ¹	mg / kg	1	USEPA 200.7 (also reference USEPA 6010C and 3050)	
Copper - Cu ¹	mg / kg	1	USEPA 200.7 (also reference USEPA 6010C and 3050)	
_ead - Pb ¹	mg / kg	1	USEPA 200.7 (also reference USEPA 6010C and 3050)	
Mercury - Hg ²	mg / kg	0.1	USEPA 7471A (also reference USEPA 3050)	
Nickel - Ni ¹	mg / kg	1	USEPA 200.7 (also reference USEPA 6010C and 3050)	
Zinc - Zn ¹	mg / kg	1	USEPA 200.7 (also reference USEPA 6010C and 3050)	
	Tota	al Petroleum Hyd	drocarbons (TRHs) in Soil	
old fractions				
C ₆ -C ₉ fraction	mg / kg	25	USEPA 8260	
C ₁₀ -C ₁₄ fraction	mg / kg	50	USEPA 8000	
C ₁₅ -C ₂₈ fraction	mg / kg	100	USEPA 8000	
C ₂₉ -C ₃₆ fraction	mg / kg	100	USEPA 8000	
NEPM 2013 Fractions		•		
C_6 - C_{10} fraction	mg / kg	25	USEPA 8260	
>C ₁₀ -C ₁₆ fraction	mg / kg	50	USEPA 8000	
>C ₁₆ -C ₃₄ fraction	mg / kg	100	USEPA 8000	
>C ₃₄ -C ₄₀ fraction	mg / kg	100	USEPA 8000	
01 10		BTE	EX in Soil	
Benzene	mg / kg	0.2	USEPA 8260	
Toluene	mg / kg	0.5	USEPA 8260	
Ethylbenzene	mg / kg	0.5	USEPA 8260	
m & p Xylene	mg / kg	1	USEPA 8260	
o- Xylene	mg / kg	0.5	USEPA 8260	
		Other Organic	Contaminants in Soil	
PAHs	mg / kg	0.05-0.2	USEPA 8270	
CHCs	mg / kg	1	USEPA 8260	
VOCs	mg / kg	1	USEPA 8260	
SVOCs	mg / kg	1	USEPA 8260	
OCPs	mg / kg	0.1	USEPA 8140, 8080	
OPPs	mg / kg	0.1	USEPA 8140, 8080	
PCBs	mg / kg	0.1	USEPA 8080	
Phenolics	mg / kg	5	APHA 5530	
		As	sbestos	
		Presence /		

Notes:

1. Acid Soluble Metals by ICP-AES

2. Total Recoverable Mercury

Table QC4 - Analytical Parameters, PQLs and Methods - Groundwater

Parameter	Unit	PQL	Method	Parameter	Unit	PQL	Method		
Не	avy Meta	ls	-	Chlorinated Hydrocarbons (CHCs)					
Antimony - Sb	μg/L	1	USEPA 200.8	1,2-dichlorobenzene	μg/L	1	USEPA 8260C		
Arsenic - As	μg/L	1	USEPA 200.8	1,3-dichlorobenzene	μg/L	1	USEPA 8260C		
Beryllium - Be	μg/L	0.5	USEPA 200.8	1,4-dichlorobenzene	μg/L	1	USEPA 8260C		
Cadmium - Cd	μg/L	0.1	USEPA 200.8	1,2,3-trichlorobenzene	μg/L	1	USEPA 8260C		
Chromium - Cr	μg/L	1	USEPA 200.8	1,2,4-trichlorobenzene	μg/L	1	USEPA 8260C		
Cobalt - Co	μg/L	1	USEPA 200.8	Hexachlorobutadeine	μg/L	1	USEPA 8260C		
Copper - Cu	μg/L	1	USEPA 200.8	1,1,2-trichloroethane	μg/L	1	USEPA 8260C		
Lead - Pb	μg/L	1	USEPA 200.8	Hexachloroethane	μg/L	10	USEPA 8270D		
Mercury - Hg	μg/L	0.05	USEPA 7471A	Other CHCs	μg/L	1	USEPA 8260C		
Molybdenum - Mo	μg/L	1	USEPA 200.8	Semi-Vol	atile Org	anic Co	mpounds (SVOCs)		
Nickel - Ni	μg/L	1	USEPA 200.8	Aniline	μg/L	10	USEPA 8270D		
Selenium - Se	μg/L	1	USEPA 200.8	2,4-dichloroaniline	μg/L	10	USEPA 8270D		
Silver - Ag	μg/L	1	USEPA 200.8	3,4-dichloroaniline	μg/L	10	USEPA 8270D		
Tin (inorg.) - Sn (all forms)	μg/L	1	USEPA 200.8	Nitrobenzene	μg/L	10	USEPA 8270D		
Nickel - Ni	μg/L	1	USEPA 200.8	2,4-dinitrotoluene	μg/L	10	USEPA 8270D		
Zinc - Zn	μg/L	1	USEPA 200.8	2,4,6-trinitrotoluene	μg/L	10	USEPA 8270D		
Total Petroleun				_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		lic Com			
C_6 - C_9 fraction	μg/L	10	USEPA 8220A / 8000	Phenol	μg/L	10	USEPA 8270D		
C ₁₀ -C ₁₄ fraction	μg/L	50	USEPA 8000	2-chlorophenol	μg/L	10	USEPA 8270D		
C_{15} - C_{28} fraction	μg/L	100	USEPA 8000	4-chlorophenol	μg/L	10	USEPA 8270D		
C ₂₉ -C ₃₆ fraction	μg/L	100	USEPA 8000	2, 4-dichlorophenol	μg/L	10	USEPA 8270D		
NEPM 2013				2,4,6-trichlorophenol	μg/L	10	USEPA 8270D		
C ₆ -C ₁₀ fraction	μg/L	10	USEPA 8220A / 8000	2,3,4,6-tetrachlorophenol	μg/L	10	USEPA 8270D		
>C10-C16 fraction	μg/L	50	USEPA 8000	Pentachlorophenol	μg/L	10	USEPA 8270D		
>C ₁₆ -C ₃₄ fraction	μg/L	100	USEPA 8000	2,4-dinitrophenol	μg/L	100	USEPA 8270D		
>C ₃₄ -C ₄₀ fraction	μg/L	100	USEPA 8000		Miscellar	neous Pa	arameters		
BTEX				Total Cyanide	μg/L	4	APHA 4500C&E-CN		
Benzene	μg/L	1	USEPA 8260	Fluoride	μg/L	100	APHA 4500 F-C		
Toluene	μg/L	1	USEPA 8260	Salinity (TDS)	mg/L	5	APHA 2510		
Ethylbenzene	μg/L	1	USEPA 8260	рН	units	0.1	APHA 4500H+		
m- & p-Xylene	μg/L	2	USEPA 8260	OrganoPhos	sphate P	esticide	s (OPPs) Trace Level		
o-Xylene	μg/L	1	USEPA 8260	Azinphos Methyl	μg/L	0.01	USEPA 8082A/8270D		
Polyciclic Aroma	-		1 1	Chloropyrifos	μg/L	0.01	USEPA 8082A/8270D		
PAHs Level 2	μg/L	0.1	USEPA 8270	Diazinon	μg/L	0.01	USEPA 8082A/8270D		
Benzo(a)pyrene Level 3	μg/L	0.01	USEPA 8270	Dimethoate	μg/L	0.01	USEPA 8082A/8270D		
OrganoChlorine Pe	-	-		Fenitrothion	μg/L	0.01	USEPA 8082A/8270D		
Aldrin	μg/L	0.001	USEPA 8082A	Malathion	μg/L	0.01	USEPA 8082A/8270D		
Chlordane DDT	μg/L	0.001	USEPA 8082A	Parathion Temephos	μg/L	0.01	USEPA 8082A/8270D		
Dieldrin	μg/L	0.001	USEPA 8082A		μg/L	0.01	USEPA 8082A/8270D		
Endosulfan	μg/L	0.001	USEPA 8082A	-			(PCBs) Trace Level		
Endrin	μg/L	0.001	USEPA 8082A USEPA 8082A	Individual PCBs	μg/L	0.01	USEPA 8082A/8270D		
Heptachlor	μg/L μg/L	0.001	USEPA 8082A USEPA 8082A	1					
Lindane	μg/L μg/L	0.001	USEPA 8082A	1					
Toxaphene	μg/L	0.001	USEPA 8082A	1					
	r~9′ -								

QC Sample Type	Method of Assessment	Acceptable Range
	Field QC	
Blind Duplicates and Split Samples	The assessment of split duplicate is undertaken by calculating the Relative Percent Difference (RPD) of the duplicate concentration compared with the primary sample concentration. The RPD is defined as: $RPD = 100 \text{ x} \frac{ X_1 - X_2 }{\text{mean}(X1, X2)}$ Where: X ₁ and X ₂ are the concentrations of the primary and duplicate samples.	 The acceptable range depends upon the levels detected: 0-150% RPD (when the average concentration is <5 times the LOR/PQL) 0-75% RPD (when the average concentration is 5 to 10 times the LOR/PQL) 0-50% RPD (when the average concentration is >10 times the LOR/PQL)
Rinsate & Trip Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>
Laboratory prepared Trip Spike	The Trip Spike is analysed after returning from the field and the % recovery of the known spike is calculated.	70 - 130%
	Laboratory QC	
Laboratory Duplicates	Assessment of Lab Duplicate RPD as per Blind Duplicates and Split Samples.	The acceptable range depends upon the levels detected: - Any RPD (when the average concentration is <5 times the PQL) - 0-50% RPD (when the average concentration is >5 times the PQL
Surrogates Matrix Spikes Laboratory Control Samples	Assessment is undertaken by determining the percent recovery of the known surrogate spike (SS) or addition to the sample. % Recovery = $100 \times \frac{C - A}{B}$ Where: A = Concentration of analyte determined in the original sample; B = Added Concentration; and C = Calculated Concentration.	60-140% (General Analytes) 70-130% (Inorganics / Metals) 60-140% (Organics) 10-140% (SVOC and Speciated Phenols) If the result is outside the above ranges, the result must be <3x Standard Deviation of the Historical Mean (calculated over the past 12 months).
Sample Matrix Spike Duplicates	Recovery RPD	<30% (Inorganics & Organics)
Method Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>